
IEEE TNSE 1

Resilient Time Synchronisation for Aerial Swarms
by Distributed Graph Neural Networks

Yan Zong, Member, IEEE, Lejun Chen, Senior Member, IEEE,
Pep Canyelles-Pericas, Member, IEEE, Ningyun Lu, Member, IEEE, Bin Jiang, Fellow, IEEE

Abstract—Aerial swarms consisting of multiple Unmanned
Aerial Vehicles (UAVs) have been applied across various domains.
Time synchronisation is important for swarm wireless networks.
However, most studies assume that UAV clocks are synchronised,
without addressing how synchronisation is achieved. Moreover,
existing control techniques are typically designed in a centralised
manner with a known topology, limiting their applicability to
large swarms or those with dynamic wireless networks caused
by high mobility or communication link failures resulting from
jamming attacks. These limitations may lead to the instability of
the controllers, or even the downtime of the entire swarm system,
particularly under the communication link failures. Therefore, in
this work, we propose leveraging Graph Neural Networks (GNNs)
to achieve resilient clock synchronisation among UAVs. First, we
integrate the heat kernel into the graph neural network, allowing
it to retain low-frequency graph signals while attenuating high-
frequency components. This is consistent with the aim of time
synchronisation, which is to ensure that the states of all the clocks
are the same, corresponding to low-frequency graph signals.
Meanwhile, we introduce a distributed GNN architecture with
low communication overhead, in contrast to existing decentralised
GNNs that rely on fully-connected networks. Through adversarial
imitation learning, our GNN-based control policies achieve sim-
ilar synchronisation performance without requiring re-training
when scaled to large swarms, as compared to the centralised
controller using fully-connected wireless networks. Once trained,
the proposed GNN-based control policies are also resilient to
varying wireless networks, including temporary or permanent
communication link failures, and can maintain synchronisation
even when the swarm is split into two disconnected parts.

Index Terms—Graph neural networks, time synchronisation,
aerial swarms.

I. INTRODUCTION

RECENTLY, aerial swarms, which consist of multiple
Unmanned Aerial Vehicles (UAVs), have been utilised

in many domains, including logistics, resource distribution and
agriculture. Flying Ad-hoc NETworks (FANETs) are wireless
communication networks in which all UAVs (also referred

Manuscript received November 26, 2024; revised May 22, 2025; accepted
June 18, 2025. This work was supported in part by the National Natural
Science Foundation of China (NSFC) under grants 62303221 and 62333011,
and in part by the Fundamental Research Funds for the Central Universities
under grant NS2024020. (Corresponding author: Bin Jiang.)

Y. Zong is with the College of Automation Engineering, Nanjing University
of Aeronautics and Astronautics, Nanjing, China, and also with the Purple
Mountain Laboratories, Nanjing, China (e-mail: y.zong@nuaa.edu.cn).

L. Chen, N. Lu and B. Jiang are with the College of Automation Engi-
neering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
(e-mail: {l.chen, luningyun, binjiang}@nuaa.edu.cn).

P. Canyelles-Pericas is with the Department of Robotics and
Mechatronics, Faculty of Electrical Engineering, Mathematics and
Computer Science, University of Twente, the Netherlands (e-mail:
{j.canyellespericas@utwente.nl).

to as vehicles or nodes) communicate directly with each
other, without any communication links to a ground station
[1]. Time synchronisation is crucial for enabling data fusion,
distance measurements and collaborative control in such wire-
less networks [2]. However, most existing studies implicitly
assume that all UAV clocks are synchronised, without explic-
itly addressing how such synchronisation is achieved in the
networks [2], [3]. Due to the high mobility of UAVs in aerial
swarms (often exceeding 30 kmh−1), the wireless network
changes continuously [1], [2], [5]. In addition, communication
networks are susceptible to temporary or permanent wireless
communication link failures caused by jamming attacks1,
further contributing to the dynamic swarm network variations.
Thus, achieving time synchronisation in a mobile and dynamic
swarm communication network remains a non-trivial issue,
and without synchronisation, the swarm system may fail. In
this work, we aim to use Graph Neural Networks (GNNs) to
achieve resilient clock synchronisation, thereby addressing the
assumptions and challenges of synchronisation in swarms.

Time synchronisation has been studied in the control en-
gineering community under the topic of multi-agent systems.
However, existing control strategies (e.g. [7], [8]) are typically
designed based on known topologies in a centralised manner,
limiting their applicability to swarm systems with large-scale
or dynamically changing wireless networks. The transferable
[9] and decentralised [4] characteristics of graph neural net-
works offer a promising solution to these challenges. Never-
theless, many GNN-based control policies are still evaluated
in centralised simulations. Although [10] implements GNNs
in a decentralised form, it adopts a fully-connected wireless
network among five vehicles, which could result in significant
communication overhead when applied to a large number of
UAVs.

Therefore, we propose distributed graph neural networks
to achieve clock synchronisation in aerial swarms, thereby
addressing the challenges of scalability and implementation.
Furthermore, we demonstrate that our trained GNN models are
resilient to varying wireless networks, including the temporary
or permanent communication link failures caused by jamming

1We consider jamming attacks in which a malicious jammer broadcasts a
high-power signal [6]. This not only disrupts packet reception by introducing
strong interference during data transmission, but also prevents UAVs from
accessing the wireless channel by continuously occupying it. In other words,
jamming attacks targeting the communication links between UAVs can lead to
temporary or permanent communication failures on the affected links (i.e. no
wireless packets can be successfully received on those links), thereby changing
the network topology. Attacks involving adversarial data injection into wireless
packets or partial data reception by UAVs are beyond the scope of this work.

IEEE TNSE 2

TABLE I
COMPARISON OF EXISTING PROTOCOLS.

Community Protocol Key algorithm Task One-hop
or network-wide

Resilience to topological changes
under link failures

Communications
[2] Recursive averaging

Synchronisation

One-hop ✗
PkCOs [12] Proportional-integral control One-hop ✗
BATS [14] Least squares regression One-hop ✗

Control theory

R-PkCOs [8] Robust control One-hop ✗

[15] Maximum likelihood
estimation One-hop ✗

PISync [16] Adaptive control One-hop ✗

Machine learning

GCNNs
and GRNNs [31] Graph neural network Flocking Network-wide ✗

[47] Graph neural network Network-wide ✗

attacks, and can maintain synchronisation even when the
swarm is split into two parts. Such a GNN-based control policy
may serve as a backup controller in safety-critical applications
[11].

A. Related Work

We begin by analysing time synchronisation from the per-
spectives of communication and control. Next, we present
graph neural networks in both the spectral and spatial domains,
followed by their application in closed-loop systems. Finally,
we discuss the resilience of GNN-based control policies under
varying wireless networks, with a particular focus on the
temporary or permanent communication link failures induced
by jamming attacks.

In the literature, the Global Navigation Satellite System
(GNSS) is widely used as a reference clock to synchronise
all UAV clocks in an aerial swarm. Specifically, each UAV is
equipped with a GNSS receiver, enabling time synchronisation
across the swarm [5]. However, GNSS signals are not always
available, such as in indoor environments or forested areas [1].

1) Time Synchronisation from Communication and Control
Perspectives: Owing to the significance of time synchronisa-
tion, it has been extensively studied in both the wireless com-
munications and control systems communities. The wireless
communications community has proposed packet exchange-
based algorithms (e.g. [2], [12]–[14]). In these approaches,
timestamps are locally generated by each clock and wirelessly
transmitted. Upon receiving packets containing these times-
tamps, the clock offset, which is the difference between UAV
clocks, is estimated and used for clock adjustment.

In packet exchange-based synchronisation methods, early
studies mainly focused on designing packet-exchange strate-
gies to accurately measure clock offsets, thus achieving time
synchronisation by applying correction values (obtained from
the offsets) to the clocks. Later, attention shifted to employing
advanced processing techniques, such as recursive averaging
[2], least squares regression [14] and maximum likelihood esti-
mation [15], to further improve the precision of the correction
values. As shown in Table I, the above studies only investigate
one-hop time synchronisation performance, while overlooking
synchronisation from a network-wide perspective.

For the control systems community, clock synchronisation
is typically studied under the topic of multi-agent systems.
Numerous control strategies, including dynamic control [7],

robust control [8] and adaptive control [16], have been pro-
posed to achieve precise time synchronisation. However, the
parameters of these strategies are usually designed based on
pre-known network topologies in a centralised manner, which
limits their applicability in swarm systems with large-scale
structures or communication networks subject to topological
changes caused by the high mobility or the communication
link failures. Inspired by the transferable nature of graph neural
networks, this study proposes leveraging GNNs to achieve
resilient time synchronisation in aerial swarms with large-
scale or dynamically changing networks, thereby addressing
the challenges of scalability and implementation [4].

2) Graph Neural Network-based Control Policies: There
are two types of graph neural networks: spectral and spatial
GNNs. Graph neural network inference includes two phases:
the first phase involves aggregating and combining node or
edge features, while the second phase is pooling or readout.
The pooling/readout phase depends on the type of task, such
as node-level, edge-level, or graph-level tasks [17]–[19]. For
instance, the output from the first phase may be directly used
for node-level tasks, while a MultiLayer Perceptron (MLP) is
applied to handle graph-level tasks [17].

For spectral GNNs, a spectral graph signal (obtained from
a spatial graph signal via the graph Fourier transform) is first
processed using a spectral filter (e.g. low-pass, band-pass,
or high-pass). Then, the inverse graph Fourier transform is
applied to convert the processed spectral signal back to the
spatial domain. The (inverse) graph Fourier transform requires
computing the eigendecomposition of the graph Laplacian
matrix, which demands intense computation, especially for
large graphs (i.e. large-scale FANETs). To address this issue,
several studies propose using Chebyshev expansion [20] or
Jacobi basis [21] functions to approximate the spectral filter,
thereby eliminating the need to calculate the eigenvectors of
the Laplacian matrix. Moreover, the work in [22] introduces
the Graph Convolutional Network (GCN) using a first-order
Chebyshev polynomial. In other words, each layer of the GCN
aggregates features from one-hop neighbours, which are then
used to calculate a new feature vector for the next layer.

Practically, reaching an isothermal equilibrium in the heat
diffusion process is similar to realising time synchronisation
in aerial swarms [23]. In the heat diffusion process, heat
flows through the edges of a graph, and the diffusion rate
is proportional to both the temperature differences between

IEEE TNSE 3

adjacent nodes and the edge weights [24]. The heat kernel [25]
has been used as a solution to the heat diffusion problem. In
the literature (e.g. [24], [26], [27]), heat kernel-based GNNs
have also been proposed. The heat kernel can be regarded as a
low-pass filter, which smooths out the features of all nodes in a
graph and retains only the low-frequency graph signals2 [24],
[26], [28]. It explicitly attenuates high-frequency graph signals
[26], which is consistent with the aim of time synchronisation,
namely, letting the clock offsets of all UAVs converge to zero
(i.e. a low-frequency graph signal). Hence, in this work, we
are interested in leveraging heat kernel-based GNNs to study
time synchronisation in aerial swarms.

On the other hand, spatial GNNs usually define operations
by leveraging graph structural information, including node
and edge features. These operations are designed to aggregate
features from neighbouring nodes, which is also referred to
as the message passing scheme [17], [29]. Due to this feature
aggregation mechanism, the GCN also belongs to the spatial
GNN category. Note that stacking ℓ GNN layers is equivalent
to aggregating (hidden) features from ℓ-hop neighbours [18],
[29].

In addition to node-level classification [22], [30] and graph-
level classification [20], graph neural networks have also re-
cently been employed in closed-loop systems, such as flocking
[10], [31] and path planning [32]. The first phase of the GNNs
in [4], [10], [31] involves polynomial operations on a graph
matrix (e.g. a normalised adjacency matrix), while the second
phase is an MLP-based readout. However, the above GNN-
based control policies are conducted in centralised simulations.
The features of all vehicles are sent to a central vehicle
for processing via polynomial operations and an MLP, and
the processed data is then returned to each vehicle. Overall,
these GNNs fall into the category of centralised control
strategies [10], [33]. Even though [10] implements a GNN in a
decentralised form, it relies on a fully-connected wireless net-
work for communication. Such a decentralised GNN increases
communication overhead when scaled to a large number of
vehicles. To address this, we introduce distributed graph neural
networks, which avoid significant communication overhead in
aerial swarms, for time synchronisation in wireless networks.

Aerial swarms are particularly vulnerable to jamming at-
tacks [6], [34], as wireless communication links among UAVs
can be easily disrupted by various types of jamming, such as
constant [35], reactive [36], deceptive, and random and peri-
odic jamming [37]. The main differences among these attacks
lie in the specific strategies used by the malicious jammer to
transmit interfering signals. Nevertheless, the effects of such
attacks remain similar and can, without loss of generality,
be represented as the temporary or permanent communication
link failures, which in turn lead to the changes in the wireless
network topology. Such topological variations may further
result in the instability of time synchronisation systems in

2High and low frequencies in graph signals refer to variations between
nodes in a graph, rather than to temporal frequencies [e.g. f0 and f [t] in Equ.
(1), with units of Hz], as in traditional signal processing. Low-frequency graph
signals represent that all nodes possess similar values, and show only minor
variations among adjacent nodes. Further details on high- and low-frequency
graph signals are provided in Section 3.

aerial swarms, particularly when control strategies are fixed
and designed based on known network topologies. Moreover,
an attack on the central UAV operating these centralised
control algorithms may cause the entire swarm to experience
operational downtime. Attacks involving adversarial data in-
jection into wireless packets are beyond the scope of this work.

Fortunately, several studies have shown that GNNs exhibit
transferability across diverse graphs [9]. This property has
been analysed using various approaches, including the sam-
pling method [9], the stability approach [38], and the graphon
method [39]. However, these studies have thus far been
limited to open-loop systems. Integrating GNNs into closed-
loop systems poses new theoretical challenges, particularly in
the presence of adversarial attacks (i.e. dynamic changes in
the network topology during inference). To the best of our
knowledge, the resilience of GNNs in closed-loop systems
remains an open question. In addition to certifying the trans-
ferability of graph neural networks, adversarial training has
also been used to improve the resilience of GNN algorithms
[40], [41]. Adversarially perturbed graphs are injected into the
training dataset to enhance GNN performance during inference
[42]. Therefore, this work focuses on adopting an adversarial
training approach to optimise the parameters of GNNs and
empirically evaluate their resilience under the temporary or
permanent communication link failures.

B. Contributions and Paper Organisation

In this study, we propose leveraging graph neural networks
to achieve resilient clock synchronisation among UAVs. The
heat kernel retains low-frequency graph signals while attenu-
ates high-frequency graph signals, which is consistent with the
aim of time synchronisation. We integrate the heat kernel into
the graph neural networks to improve clock synchronisation
performance in swarms. Then, we introduce the distributed
GNN architecture, which can avoid significant communication
overhead, compared to the existing decentralised GNNs that
rely on fully-connected networks. Through the adversarial
training scheme, our GNN-based control policies achieve sim-
ilar synchronisation performance without requiring re-training
when scaled to large swarms, as compared to the centralised
controller using fully-connected wireless networks. Further-
more, once trained, the proposed GNN-based control policies
are also resilient to varying wireless networks, including the
temporary or permanent communication link failures resulting
from jamming attacks, and can maintain synchronisation even
when the swarm is split into two disconnected parts.

The rest of this paper is organised as follows: Section
2 presents the preliminaries and problem description. Next,
Section 3 introduces the distributed graph neural network
architecture using the heat kernel, which is trained using the
adversarial imitation learning scheme. Then, the simulation
results are shown in Section 4. Finally, Section 5 concludes
this work.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

This section starts by presenting the widely used clock
model and the centralised networked controller based on a

IEEE TNSE 4

TABLE II
MAIN NOTATION TABLE.

Symbol Description
θ[t], γ[t] Clock offset and skew at the time instant t.

ωθ[t], ωγ [t] Clock offset and skew noises at t.
uθ[t], uγ [t] Offset and skew control inputs at t.

τ Clock update interval.

x[t]
Networked clock state at t,

including all clock states x[t] = [θ[t], γ[t]]⊤.

u[t]
Networked control input at t,

consisting of all control inputs u[t] = [uθ[t], uγ [t]]
⊤.

ω[t]
Networked clock noise at t,

containing all noise components ω[t] = [ωθ[t], ωγ [t]].

Lfull
Swarm Laplacian matrix

for a fully-connected wireless network.
F∗ The centralised controller.

L[t]
Time-varying Laplacian matrix at t,

induced by mobility and wireless link failures.

Hℓ
Feature matrix with

Gℓ hidden features at the ℓ-th GNN layer.

W
A set of learnable weight matrices Wℓ,k

for the k-th polynomial term at the ℓ-th GNN layer.
ρ Heat kernel hyperparameter.
L Number of GNN layers.
c[t] Cost for GNN evaluation and testing at t.
∆[t] Synchronisation precision at the time instant t.

fully-connected communication network, which is considered
the expert control policy in imitation learning. We then briefly
introduce decentralised GNN-based control policies and de-
scribe the problem addressed in this work.

A. Basics of Conventional Time Synchronisation

In the wireless network of an aerial swarm with N UAVs,
if two UAVs are within the communication radius R of each
other, they can establish a bidirected communication link to
exchange wireless packets. The weight apq , which is an ele-
ment of A, is equal to 1 (i.e. apq = aqp = 1); otherwise, it is
zero. A indicates the adjacency matrix of the swarm’s wireless
network, and D is the diagonal degree matrix of the commu-
nication network. The network Laplacian matrix is defined as
L = D−A. The eigenvalues and eigenvectors of the Laplacian
matrix L are denoted by Λ = diag(λ1, λ2, . . . , λN)
and U = (u1, u2, · · · , uN), respectively, and we have
L = UΛU⊤. The i-th column of U (i.e. ui) corresponds
to the frequency component associated with eigenvalue λi.
A small eigenvalue means that the corresponding eigenvector
is a low-frequency graph signal, while a large eigenvalue
represents a high-frequency graph signal. The non-negative
eigenvalues are typically ordered as λ1 ≤ λ2 ≤ · · · ≤ λN .
The orthogonality of U = (u1, u2, . . . , uN) implies that
u⊤
i uj = 0 when i ̸= j, and u⊤

i ui ̸= 0. The graph Fourier
transform of a graph signal x ∈ RN is x̃ = U⊤x, and its
inverse graph Fourier transform is given by x = Ux̃. Here,
x̃λ = U⊤

:λz represents the frequency component of x at the
frequency λ, and U:λ is the corresponding eigenvector. The
main symbols are summarised in Table II.

For an embedded system, the clock module is composed of
a crystal oscillator and a chain of counters [12]. At the t-th
reference time instant, provided by an ideal clock with nominal
frequency f0, the local time of a non-ideal clock module

operating at frequency f [t] is commonly denoted by C[t].
The behaviour of a free-running non-ideal clock is typically
modelled as a double integrator:{

θ[t+ 1] = θ[t] + τγ[t] + ωθ[t]

γ[t+ 1] = γ[t] + ωγ [t]
(1)

where θ[t] and γ[t] represent the clock offset and skew,
respectively, at the t-th time instant. The clock offset is defined
as θ[t] = C[t] − C0[t], where C0[t] is the ideal clock time.
The clock skew is given by γ[t] = (f [t] − f0)/f0. τ is the
clock update interval (or step size). The offset and skew noises
ωθ[t] and ωγ [t] are modelled as uncorrelated white Gaussian
processes with variances τσ2

θ and τσ2
γ , respectively [43].

If no synchronisation solution is employed in the swarm,
each UAV possesses a non-ideal clock indicating a different
time C[t], owing to the presence of θ[0], γ[0], ωθ[t] and ωγ [t].
However, through wireless exchange of clock information
among UAVs, the clock offset and skew can be measured,
thereby obtaining the clock offset adjustment value uθ[t] and
the skew adjustment value uγ [t]. The aerial swarm achieves
time synchronisation by applying uθ[t] and uγ [t] to each
UAV clock. Similar to [7], we modify Equ. (1) to model the
synchronisation of networked clocks:

x[t+ 1] = x[t]A+ u[t] + ω[t], (2)

where x[t] =
[
x⊤
1 [t], x⊤

2 [t], . . . , x⊤
N [t]

]⊤ ∈ RN×2 is the net-
worked clock state (which also represents the graph signals),
and the local clock state x[t] is given by x[t] = [θ[t], γ[t]]

⊤.
Similarly, u[t] =

[
u⊤
1 [t], u⊤

2 [t], . . . , u⊤
N [t]

]⊤ ∈ RN×2

denotes the networked control input, and u[t] is defined as
u[t] = [uθ[t], uγ [t]]

⊤, with values determined by different
control strategies. The networked clock noise is given by
ω[t] =

[
ω⊤
1 [t], ω⊤

2 [t], . . . , ω⊤
N [t]

]⊤ ∈ RN×2, and ω[t] is
equal to ω[t] = [ωθ[t], ωγ [t]]. The system matrix A is given
by

A =

[
1 0
τ 1

]
.

Until now, many control strategies have been proposed for
calculating u[t]. To achieve time synchronisation, we adopt
a centralised networked controller based on a fully-connected
communication network for imitation learning:

u[t] = F∗(x[t] | Lfull)

= Lfullx[t]K
(3)

where Lfull denotes the Laplacian matrix of the swarm fully-
connected wireless network, K is the networked control
gain. The networked clock state x[t] is used to calculate
the networked control input u[t]. In the following, the above
centralised networked controller F∗ in Equ. (3) is referred to
as the expert control policy for imitation learning.

By combining Equs. (2) and (3), the closed-loop networked
clock synchronisation system under the centralised networked
controller is obtained as follows:{

x[t+ 1] = x[t]A+ u[t] + ω[t]

u[t] = Lfullx[t]K
(4)

IEEE TNSE 5

Utilising the fully-connected wireless network leads to
significant communication overhead, particularly for a swarm
with a large number of UAVs. Thus, a fully-connected wireless
network is uncommon in practice. In addition, the network
topology may vary over time due to the high mobility of
UAVs and the presence of the communication link failures.
The swarm network Laplacian matrix L[t] at the t-th time
instant is given by:

L[t] = Linit[t] + ∆Lvar[t] + ∆Ljam[t] (5)

where Linit[t] is the initial Laplacian matrix, ∆Lvar[t] implies
the topological perturbations caused by frequent changes in
the highly mobile wireless network, and ∆Ljam[t] represents
the temporary or permanent communication failures resulting
from jamming attacks. If the communication link between two
UAVs is disrupted by a jamming attack, the corresponding off-
diagonal elements in the Laplacian and adjacency matrices
become zero (i.e. apq = aqp = 0).

By incorporating the time-varying wireless network topol-
ogy L[t], Equ. (4) is modified as follows:{

x[t+ 1] = x[t]A+ u[t] + ω[t]

u[t] = L[t]x[t]K[t]
(6)

Typically, designing the networked control gain requires con-
sideration of the network topology. The value of K[t] depends
on the Laplacian matrix, and any change in the matrix neces-
sitates a re-design of K[t] [7].

To summarise, conventional control methods are usually
designed in a centralised manner based on a known network
topology [e.g. L[0] in Equ. (6)]. The pre-determined control
gain K[0] may not be applicable to an aerial swarm with
a time-varying communication network, and a re-design of
K[t] is required at the time instant t. Moreover, an attack on
the central UAV operating these centralised control algorithms
may lead to the downtime of the entire swarm system. Our
interest lies in using imitation learning to let the GNN-based
control policies mimic the centralised controller in Equ. (3).
The trained GNN models are resilient to topological changes
in the swarm communication network, such as those caused
by the temporary or permanent communication link failures.

B. Problem Description

Thanks to the inherently transferable and decentralised
nature of graph neural networks, GNN-based control policies
may overcome the above issues associated with the tradi-
tional control methods. However, the decentralised GNN-
based control policies that rely on fully-connected wireless
networks also result in significant communication overhead
in a swarm with a large number of UAVs. In addition, the
GNNs composed of graph matrix polynomials tend to amplify
high-frequency graph signals while suppressing low-frequency
components. This behaviour conflicts with the purpose of
synchronisation, which involves keeping only low-frequency
graph signals.

Our goal is twofold. First, we propose distributed GNN-
based control policies that integrate the heat kernel and imitate
the centralised networked controller F∗ in Equ. (3). The

proposed distributed GNN architecture involves communica-
tion only among one-hop neighbouring UAVs. The integra-
tion of the heat kernel into the GNNs explicitly attenuates
high-frequency graph signals. Consequently, the trained GNN
models achieve similar synchronisation performance without
requiring re-training when applied to a swarm with large-scale
or changing wireless network due to the high mobility, as
compared to the centralised controller using a fully-connected
communication network. Second, our GNN models trained
through adversarial imitation learning are resilient to a varying
wireless network, particularly in the presence of the temporary
or permanent link failures.

Therefore, the proposed GNN-based control policies for
time synchronisation ensure that all UAVs maintain identical
offset and skew values, even in swarms with large-scale
structures or communication networks subject to topological
changes due to the high mobility or the communication link
failures. That is,

lim
t→∞

x⊤[t]L[t]x[t] = 02×2 (7)

where 02×2 is a 2×2 diagonal matrix with all diagonal entries
equal to zero.

Remark 1. The random fluctuations of the clock frequency
f [t] in Equ. (1) are dominated by random-walk Frequency
Modulation (FM) noise and white FM noise [43]. It is usually
sufficient to consider these two types of noise to represent the
dynamics of the clock frequency [44]. For example, the clock
models in [43] and [44], and the references therein, all assume
that the clock noise is Gaussian. The finite-order state model
fails to model flicker FM noise, and the double-integrator state-
space model in Equ. (1) also cannot include this noise [43],
[45].

The impacts of Phase Modulation (PM) noise are short-
term, usually affecting timescales shorter than the typical
time synchronisation cycle of 1 s [43], which corresponds
to the order of magnitude commonly adopted in wireless
communications, such as in the IEEE 1588 synchronisation
protocol. Accordingly, it is reasonable to assume that such
synchronisation schemes have a negligible effect on the per-
formance of the local clock with respect to both types of phase
noise. Therefore, their contributions are not considered in our
clock model.

Remark 2. The derivation of the networked control gains in
Equs. (4) and (6) is beyond the scope of our study. We aim
to use GNNs to imitate the centralised networked controller.
Readers interested in the design and derivation of K[t] are
referred to our prior work [7], where we design a networked
controller guaranteeing that the achieved time synchronisation
performance is robust to the networked clock noise ω[t].

III. DISTRIBUTED GRAPH NEURAL NETWORKS

In this section, we first analyse the impact of the Tanh
activation function in GNNs from a spectral perspective, and
integrate the heat kernel into graph neural networks. Then, we
introduce the distributed graph neural network architecture.
Finally, we leverage adversarial imitation learning to train the

IEEE TNSE 6

-30

-18

-6

6

18

30

0 2 4 6 8 10 12 14

-1.75

-1.1

-0.45

0.2

0.85

1.5

Fig. 1. Frequency components of graph signals before and after applying the
Tanh function at t = 2 (upper) and t = 900 (lower). Blue represents the
graph signal components before applying Tanh, while orange corresponds to
the components after applying Tanh.

proposed GNNs, resulting in the GNN models that are resilient
to varying swarm networks caused by the communication link
failures.

A. Graph Neural Networks with the Heat Kernel

So far, GNNs have been extensively studied from both the
spectral and spatial perspectives. The inference process of
GNNs is usually divided into two phases. The aggregation
and combination phase consists of L layers, with each layer
represented as a K-th order polynomial of the Laplacian
matrix L ∈ RN×N , yielding:

Hℓ+1 = σ

(
K∑

k=0

LkHℓWℓ,k

)
(8)

where Hℓ =
[
h1
ℓ , h2

ℓ , . . . , hGℓ

ℓ

]
∈ RN×Gℓ represents the

feature matrix at the ℓ-th layer, and Gℓ is the number of
(hidden) features at this layer. Hℓ contains Gℓ graph signals
[46], with each column hg

ℓ representing a graph signal corre-
sponding to one feature at the ℓ-th layer. Wℓ,k ∈ RGℓ×Gℓ+1

denotes the learnable weight matrix corresponding to the k-th
polynomial term at the ℓ-th layer, and σ is the element-wise
activation function.

In [10], [31], [32], [47], σ in Equ. (8) is the tangent
activation function (i.e. Tanh). We analyse the role of Tanh
in GNNs from the spectral perspective. Given the element-
wise Tanh operation applied to the graph signals x[t] in the
spatial domain, we investigate its equivalent effects, denoted
as Tanh’, on x̃[t] in the spectral domain, following

Tanh’ (x̃[t]) = U⊤Tanh (Ux̃[t]) (9)

This implies that different frequency components are first
transformed via U, then attenuated through the element-wise
Tanh function, and finally redistributed to each frequency
via U⊤. Fig. 1 shows that Tanh typically suppresses the
frequency components, especially those corresponding to large
frequency values of λ. This is particularly true during con-
vergence (i.e. t = 2). However, suppressing the frequency
components may increase the convergence time. We conclude
that the Tanh function is not critical, which is also consistent

with the results in [18]. Therefore, no activation function is
used in our work.

In the following, we remove the Tanh activation function
from GNNs, and analyse Equ. (8) in the spectral domain:

Hℓ+1 =

K∑
k=0

LkHℓWℓ,k

= HℓWℓ,0

+
(
λ1u1u

⊤
1 + · · ·+ λNuNu⊤

N

)
HℓWℓ,1

+ · · ·+
(
λK
1 u1u

⊤
1 + · · ·+ λK

NuNu⊤
N

)
HℓWℓ,K

= HℓWℓ,0

+ u1u
⊤
1 Hℓ

(
λ1Wℓ,1 + · · ·+ λK

1 Wℓ,K

)
+ · · ·+ uNu⊤

NHℓ

(
λNWℓ,1 + · · ·+ λK

NWℓ,K

)
= U

(
K∑

k=0

Λk
(
U⊤Hℓ

)
Wℓ,k

)
.

(10)

From Equ. (10), it can be seen that the graph Fourier transform
is first utilised to convert the graph signals Hℓ ∈ RN×Gℓ from
the spatial domain to the spectral domain. Then, by applying
the matrix polynomial

∑K
k=0 Λ

k(·)Wℓ,k and the inverse graph
Fourier transform, we finally obtain the filtered graph signals
Hℓ+1 ∈ RN×Gℓ+1 in the spatial domain.

In Equ. (10),
{
u1u

⊤
1 , u2u

⊤
2 , . . . , uNu⊤

N

}
is a set of

basic filters [26], [27].
(
λiWℓ,1 + λ2

iWℓ,2 + · · ·+ λK
i Wℓ,K

)
represents the basic filter coefficient, which also indicates the
magnitude of a graph signal that can pass through the filter
uiu

⊤
i . Note that the message passing scheme (i.e. aggregation)

in the spatial domain is essentially equivalent to filtering with
N basic filters in the spectral domain. For each eigenvector
ui of the Laplacian matrix L, its corresponding eigenvalue λi

can characterise the smoothness of ui:

λi = u⊤
i Lui =

1

2

N∑
p=1,q=1

apq (ui (p)− ui (q))
2
. (11)

From Equ. (11), a small eigenvalue λi indicates that the
corresponding graph signal ui carries tiny variations across
adjacent nodes, and is thus considered a low-frequency (i.e.
smoother) graph signal. Conversely, a large eigenvalue for ui

suggests a high-frequency (i.e. less smooth) graph signal ui

[48], [49]. This implies that the high and low frequencies in
this work refer to variations across the nodes of the graph,
rather than to temporal frequencies [e.g. f [t] in Equ. (1)].

If no time synchronisation algorithm is applied in aerial
swarms, each UAV possesses distinct clock offset and skew
values. The initial networked clock state x[0] on the graph
corresponds to high-frequency graph signals. Once a synchro-
nisation solution is employed and all clocks in the wireless
communication network are synchronised, the UAVs share the
same clock offset and skew values, resulting in x[∞] becoming
low-frequency graph signals. This implies that the purpose of
time synchronisation is to evolve the high-frequency graph
signals x[0] into the low-frequency graph signals x[∞] at
the steady synchronised state. However, the GNNs in [10],
[31], [32], [47], which consist of several instances of Equ.
(8), assign greater weight to high-frequency basic filters and

IEEE TNSE 7

lesser weight to low-frequency ones. In other words, the
GNNs in these studies amplify high-frequency signals while
suppressing low-frequency graph signals. By contrast, the heat
kernel smooths out the features of all nodes in a graph and
retains only low-frequency graph signals, explicitly reducing
the impact of high-frequency components [26], which is
consistent with the aim of synchronisation. From [25], the
heat kernel is defined as

f(Λ) = e−ρΛ =

e−ρλ1 0 · · · 0
0 e−ρλ2 · · · 0
...

...
. . .

...
0 0 · · · e−ρλN

 (12)

where ρ > 0 is the hyperparameter, and it controls the heat
diffusion rate. We propose to use the heat kernel in Equ. (12)
for graph neural networks, yielding:

Hℓ+1 = U

(
K∑

k=0

f (Λ)
k (

UTHℓ

)
Wℓ,k

)
= HℓWℓ,0

+
(
e−ρλ1u1u1

⊤ + · · ·+ e−ρλNuNuN
⊤)HℓWℓ,1

+ · · ·+
(
e−Kρλ1u1u1

⊤ + · · ·
+ e−KρλNuNuN

⊤)HℓWℓ,K

= HℓWℓ,0 + e−ρLHℓWℓ,1 + · · ·+ e−KρLHℓWℓ,K

=

K∑
k=0

e−kρLHℓWℓ,k

(13)

where e−kρλi is the weight assigned to the basic filter uiui
⊤,

which decreases as λi increases. In Equ. (8), the eigenvalue λi

corresponding to ui represents the frequency of graph signals
can pass through the filter uiui

T . It can be seen that the
proposed GNN integrating the heat kernel [i.e. Equ. (13)] can
retain low-frequency signals while suppressing high-frequency
graph signals; the above characteristic is missing in Equ. (8).

From the graph spectral perspective, the input to GNNs may
contain both high- and low-frequency components. However,
when using the heat kernel-based GNNs, the high-frequency
components are exponentially attenuated due to the low-pass
nature of the heat kernel [see Equ. (13)]. As a result, the
output of the heat kernel-based GNNs mainly retains the low-
frequency components of the input graph signals. It is impor-
tant to note that low-frequency graph signals correspond to
smooth, globally consistent variations across the nodes, rather
than constant values. Thus, these smoothed GNN outputs
ensure that all nodes (i.e. UAVs) adjust their local clocks
in a coordinated manner, thereby gradually achieving time
synchronisation in aerial swarms.

B. Distributed Graph Neural Networks for Synchronisation

Modifying the term LkHℓ in Equ. (10) to the recursive form
L
(
Lk−1Hℓ

)
allows GNNs to iteratively aggregate features

from successive one-hop neighbours at each node until k = K.
This means that LkHℓ contains aggregated information from
the k-hop neighbourhood of each node. Such a recursive form
lets GNNs naturally exhibit the decentralised characteristic.

For the decentralised GNN approach, UAVs in a swarm
are divided into multiple clusters. In each cluster, UAVs
communicate with their corresponding cluster head. However,
in [10], [50], a fully-connected wireless network is adopted
in each cluster to enable communication among UAVs. As a
result, this setup turns every UAV into a cluster head, which
increases the communication overhead in the aerial swarm.
Moreover, in [31], [32], [47], the GNN-based control policies
in Equ. (8) are simulated in a centralised manner: for example,
by pre-computing LkHℓ prior to GNN inference [18]. Yet,
simulating GNNs in these manners is not consistent with their
decentralised nature [33]. Therefore, we set K in Equ. (10) to
one (i.e. K = 1), following:

Hℓ+1 = HℓWℓ,0 + LHℓWℓ,1 (14)

Each layer in Equ. (14) aggregates only the hidden features of
one-hop neighbours for each node. This implies that stacking
L layers of Equ. (14) allows every node to aggregate the
features of its L-hop neighbours [18], [29], [51], thereby re-
alising distributed message passing and aggregation in GNNs.
Likewise, through letting K = 1, Equ. (13) is modified to

Hℓ+1 = HℓWℓ,0 + e−ρLHℓWℓ,1 (15)

In the proposed GNN architecture, no activation function
σ is included. We aim to apply GNNs to realise clock
synchronisation in aerial swarms, which is formulated as a
node-level regression task. Hence, there is no need for the
MLP-based readout used in [31] and [47].

As shown in Fig. 2, each UAV in the swarm is modelled
as a node in our GNN architecture, where the one-hop feature
aggregation is equivalent to the one-hop packet exchange be-
tween neighbouring UAVs. Since both processes rely on local,
one-hop interactions, the swarm’s distributed communication
network can be naturally represented by the GNN’s message-
passing scheme. By stacking multiple layers (e.g. L) in the
form of Equ. (14), each node can aggregate information from
its L-hop neighbourhood, without requiring direct communica-
tion through a fully connected network topology. Meanwhile,
in the swarm communication network, each UAV exchanges
packets only with its one-hop neighbours, and there is no
reliance on any cluster head. This mutual alignment between
the swarm communication pattern and the GNN architecture
allows a distributed implementation, which in turn effectively
reduces communication demands in the swarm. Moreover,
there is no central or cluster-head UAV in our architecture,
which prevents the swarm from experiencing downtime due
to attacks on individual UAVs.

In Equ. (16), we build our proposed linear graph neu-
ral network, denoted by Φl (x[t], L[t]; W), where W =
{(Wℓ,0, Wℓ,1) , ℓ = 0, 1, . . . , (L− 1)} is the set of learn-
able weights. The layer-wise computation of the proposed
graph neural network at the t-th time instant is presented in
Fig. 2. The GNN input is the networked clock state x[t],
namely, H0 = x[t]. Each layer performs a one-hop feature
aggregation to compute the next hidden features. This process
is repeated L times, resulting in the output HL = u[t], which
contains the control input u[t] for each UAV. The GNN is
parameterised by the weights W, which are optimised offline

IEEE TNSE 8

feature aggregation

One-hop packet exchange

Aerial swarm

GNN computation for the -th time instant

0

Learnable weight 1, 1

One-hop

is independently computed using
weights and applied for clock adjustment

is the input
sent to the graph neural network

Each UAV in the swarm is modelled
as a node in our GNN architecture

2
6

3

41

15

5

8

12

14

10

7

13

9

11

16

2

1

15

5

8

12

14

7

4

6

3

13

10
9

16

11

2
6

3

41

15

5

8

12

14

10

13

9

11

16

7

2
6

3

41

15

5

8

12

14

10

13

9

11

16

7

One-hop

feature aggregation

𝟐

Fig. 2. Time synchronisation in an aerial swarm using the distributed graph neural network architecture. Each UAV’s clock is represented as a node in the
GNN, while communications between neighbouring UAVs are modelled via learnable weights. Stacking multiple GNN layers allows multi-hop information
aggregation, which is similar to multi-hop wireless communication within the swarm.

x[t+ 1] = x[t]A+ u[t] + ω[t],

u[t] =

1∑
k=0

L[t]k

(
· · ·

(
1∑

k=0

L[t]kx[t]W0,k

)
· · ·

)
WL−1,k

(16)

x[t+ 1] = x[t]A+ u[t] + ω[t],

u[t] =

1∑
k=0

e−kρL[t]

(
· · ·

(
1∑

k=0

e−kρL[t]x[t]W0,k

)
· · ·

)
WL−1,k

(17)

by minimising a training loss [see Equ. 19] to imitate the
expert controller F∗. During inference, each UAV only needs
to store the relevant weights for its local neighbourhood and
can independently compute its control input u[t], thereby
enabling distributed synchronisation across the swarm.

Similarly, Φh (x[t], L[t]; W) is used to denote our GNN
based on the heat kernel [see Equs. (15) and (17)]. The
closed-loop networked synchronisation systems under these
GNN-based control policies are described in Equs. (16) and
(17). For clarity, we adopt Φ (x[t], L[t]; W) to represent the
proposed distributed GNNs, namely, Φl (x[t], L[t]; W) and
Φh (x[t], L[t]; W), in the following.

C. Adversarial Imitation Learning

In addition to introducing the distributed graph neural
network architecture, we also investigate the resilience of
GNNs to varying wireless networks caused by the high

mobility or the communication link failures. The graph neu-
ral networks are trained using both imitation learning and
adversarial training. Imitation learning allows the model to
learn a policy that mimics the behaviour of the centralised
controller from demonstrations. Adversarial training optimises
the GNN parameters by using perturbed input graphs, thereby
enhancing the model’s resilience to changes in the network
topology. Typically, this training strategy is formulated as
a bi-level min-max optimisation problem, consisting of two
iterative processes: (i) generating perturbations δL to maximise
∥Φ (x[t], (L+ δL) ; W) − F∗ (x[t] | Lfull) ∥, and (ii) updat-
ing model parameters W to minimise the same objective.

In this study, we leverage imitation learning to train GNNs
Φ (x[t], L[t]; W) from a dataset composed of input-output
pairs from Equ. (4). Here, the input refers to the value sent to
the centralised controller F∗ [i.e. x[t] in Equ. (4)], while the
output corresponds to the value computed by F∗ using a fully-
connected wireless communication network [i.e. u[t] in Equ.

IEEE TNSE 9

(4)]. Instead of adversarially injecting topology perturbations
to solve the first maximisation problem, we use the time-
varying Laplacian matrices {L[t]} from Equ. (5) to optimise
the model parameters by minimising ∥Φ (x[t], L[t]; W) −
F∗ (x[t] | Lfull) ∥.

To do so, we minimise the expected norm of the difference
between the GNN outputs Φ (x[t], L[t]; W) and the cen-
tralised controller outputs F∗ (x[t] | Lfull) over the probability
distribution of x[t] under the centralised controller, yielding:

W∗ = argmin
W

E
[∥∥∥Φ (x[t], L[t]; W)−F∗ (x[t] | Lfull)

∥∥∥]
(18)

where ∥·∥ is the norm of graph signals. For example, consider
graph signals H ∈ RN×G with G features, the norm of H
equals ∥H∥ =

∑G
g=1 ∥hg∥2. The probability distribution of

x[t] under the centralised controller F∗ is usually unknown.
To address this issue, we collect M samples of the pairs
(xm[t],um[t]) from Equ. (4) under the centralised controller
F∗. By applying the law of large numbers [39], it is reasonable
to approximate Equ. (18) using the following form:

Ŵ∗ = argmin
W

1

M

M∑
m=1

[∥∥∥Φ (xm[t], L[t]; W)

−F∗ (xm[t] | Lfull)
∥∥∥] (19)

where Ŵ∗ in Equ. (18) is close to W∗ in Equ. (19) when
M is sufficiently large. L[t] represents the changing wireless
networks resulting from the high mobility of UAVs, which
are not affected by the communication link failures during
training. The validation and test graphs (i.e. swarm network
Laplacian matrices) are excluded during training.

For the non-convex optimisation problem in Equ. (19), the
Stochastic Gradient Descent (SGD) algorithm [26], [47] is
commonly used to find the learnable parameters W, letting
the trained model generalise well to the test set [31]. This
allows the trained GNN model to mimic the behaviour of the
centralised controller F∗. Even though W and K differ in
form, they yield similar input-output pairs, thereby achieving
comparable control performance. The networked control gain
K of the centralised controller is designed to guarantee the
stability of the closed-loop synchronisation system in Equ. (4);
therefore, the GNN-based control policy is expected to inherit
this stability property [52].

The GNN models trained via the adversarial imitation learn-
ing scheme, by minimising Equ. (19) under changing networks
caused by the high UAV mobility, demonstrate resilience to
the wireless link failures induced by jamming attacks, as
shown in the simulation results. However, the integration of
GNNs into the closed-loop systems introduces new challenges
for theoretical analysis, particularly in terms of resilience
under time-varying network topologies. To the best of our
knowledge, the resilience of GNNs in such systems remains an
open question. While we rely on empirical evidence to support
the resilience of our distributed GNN-based control policies,
the certification of their resilience in the closed-loop systems
with time-varying network topologies will be addressed in
future work.

During validation and testing, in order to evaluate the time
synchronisation performance of a given controller in a swarm,
we use the following metric:

c[t] =
1

Q

∑
α∈U [t]

θα[t]−
1

Q

∑
β∈U [t]

θβ [t]

2

+
1

Q

∑
α∈U [t]

τγα[t]−
1

Q

∑
β∈U [t]

τγβ [t]

2
(20)

where U [t] denotes the set of unattacked UAVs at the time
step t, Q = |U [t]| is the number of such UAVs. θα[t] and
γα[t], respectively, are the clock offset and skew of the α-th
UAV’s clock [see Equ. (1)]. The cost in Equ. (20) measures
the deviation of each unattacked UAV’s clock offset and
skew from the average offset and skew in the swarm. The
accumulated cost

∑T
t=0 c[t] reflects the convergence speed of

clock offsets and skews in the swarm, and also reports how
good the synchronisation objective is achieved in the end. Note
that Equ. (20) is equivalent to Equ. (7), as both quantify the
deviation from the average value among unattacked UAVs over
time. The proposed graph neural networks Φ (x[t], L[t]; W)
are trained offline, with only inference performed online.

IV. SIMULATIONS

Here, we evaluate the performance of our distributed graph
neural networks, which are implemented in PyTorch 1.11.03,
for time synchronisation in aerial swarms. First, we analyse
the effects of hyperparameters on time synchronisation per-
formance. Then, we compare the proposed distributed GNNs
with several approaches. Finally, we empirically demonstrate
the resilience of the proposed GNN-based control policies
to changes in the swarm wireless network caused by the
communication link failures.

In the simulations, the aerial swarm contains 50 UAVs, each
represented by the kinematic model in [11]. The flocking and
collision avoidance algorithm, along with the swarm kinematic
parameters, is adopted from [31]. The swarm flocking duration
and clock update period (i.e. step size) are set to 10 s and
10ms, respectively. If two UAVs are within the wireless
communication radius R (where R = 2m) [31], they can
establish a communication link, thus forming a bi-directional
swarm wireless network. We normalise the Laplacian matrix
L[t] by its maximum eigenvalue. In the swarm, each UAV
is equipped with a clock modelled by Equ. (1). The initial
clock offset and skew are set to 100 µs and 0 parts per million
(ppm), respectively, and are further randomised using normal
distributions with zero means and standard deviations of 50 µs
and 50 ppm, respectively [8]. Clock offset and skew noises
are not simulated in this work.

We adopt the above configurations to generate the dataset,
which consists of 400 clock synchronisation trajectories for
training, 20 time synchronisation trajectories for validation,
and 20 synchronisation trajectories for testing. We train the
GNNs for 30 epochs using the Adam optimiser with a learning

3https://github.com/zongyan/GNNSync

IEEE TNSE 10

TABLE III
AVERAGE AND STANDARD DEVIATION OF

∑T
t=0 c[t] FOR DIFFERENT

HYPERPARAMETERS OF Φh (H;L,W).

G
L

2 3 4

16 3.96± 1.44 12.33± 3.96 568.73± 1061.95
32 1.93± 0.32 2.95± 0.68 210.99± 296.71
64 1.14 ± 0.21 1.36± 0.31 20.14± 8.50

TABLE IV
MEAN AND STANDARD DEVIATION OF

∑T
t=0 c[t] FOR DIFFERENT

HYPERPARAMETERS OF Φl (H;L,W).

G
L

2 3 4

16 4.14± 3.15 6.87± 5.02 13.60± 13.64
32 1.69± 0.57 1.22± 0.17 1.17± 0.15
64 1.11± 0.18 1.00± 0.16 0.99 ± 0.15

rate of 0.0005. The loss function for imitation learning is
the mean squared error between the GNN output and the
centralised controller output [which is the same as in Equ.
(19)]. The batch size is set to 20, and every 5 training
steps,

∑T
t=0 c[t] is calculated on the validation set. We utilise

the GNN models that achieve the lowest value of
∑T

t=0 c[t]
on the validation set for testing. We report the mean and
standard deviation of the accumulated cost

∑T
t=0 c[t] across

10 randomly generated dataset realisations.
In addition, there is no leader UAV in the swarm, and all

the algorithms aim to synchronise the UAV clocks to achieve
consensus during the simulations. We define the following
precision metric, ∆[t], to evaluate the synchronisation perfor-
mance [53]:

∆[t] =

√√√√√ 1

Q

∑
α∈U [t]

θα[t]−
1

Q

∑
β∈U [t]

θβ [t]

2

. (21)

A. Hyperparameter Selection

The heat kernel hyperparameter ρ is set to ρ = 1. We
test different values of the hidden feature dimension Gℓ ∈
{16, 32, 64} and the number of layers L ∈ {2, 3, 4} for
the distributed GNNs with and without the heat kernel. Tables
III and IV summarise the results. The accumulated cost of
the GNNs using the heat kernel decays as the number of
layers increases, whereas the linear GNNs without the heat
kernel exhibit the opposite behaviour. This is due to the non-
linearities introduced by the heat kernel [see Equs. (14) and
(15)]. We also find that utilising more hidden features can
enhance GNN performance. In the following simulations, we
select Gℓ = 64 and L = 2 for the GNNs Φh (x[t], L[t]; W)
with the heat kernel, whose layer configuration L coincides
with that of the GNNs in [26]. The value of Gℓ and L for the
linear GNN Φl (x[t], L[t]; W) without the heat kernel are set
to Gℓ = 64 and L = 4, respectively.

B. Distributed GNN-based Control for Time Synchronisation

In order to evaluate the performance of the proposed dis-
tributed GNN-based control policies, we compare them with

0

0.3

0.6

0.9

1.2
GNN

Expert ctrl

Distributed ctrl

-100

-50

0

50

100

0 200 400 600 800 1000
0

20

40

60

80

850 900 950
-0.02

0.04

0.10

Fig. 3. Evolution of the clock offset, skew, and precision under the proposed
distributed GNN-based control policy Φh (x[t], L[t]; W) (solid line), the
centralised controller using a fully-connected wireless network F∗ (dashed
line) and the conventional distributed controller (dotted line).

several control approaches: (i) the centralised controller, (ii)
a conventional distributed controller, and (iii) state-of-the-
art GNN-based control policies. Moreover, we investigate the
scalability of our proposed distributed graph neural networks
across different swarm sizes.

1) Performance Comparison between the Proposed GNN-
based and Existing Controllers: First, we compare the dis-
tributed GNN-based control policies with the centralised
controller F∗, which uses a fully-connected communication
network, and the distributed controller [8]. Fig. 3 presents
the evolution of the clock offset, skew, and synchronisation
precision under our distributed GNN-based control policy
Φh (x[t], L[t]; W) and two traditional controllers.

We train the proposed distributed graph neural networks
to learn a control policy that mimics the behaviour of the
centralised controller F∗ using a fully-connected commu-
nication network. In terms of the offset and skew, both
Φh (x[t], L[t]; W) and F∗ achieve similar performance. As
illustrated in Fig. 3, the mean precision ∆[t] in the synchro-
nised state (i.e. from step 900 to 1000, corresponding to 9 s to
10 s) across 10 randomly generated realisations is comparable
under both Φh (x[t], L[t]; W) and F∗, with values of 5.40×
10−13 µs and 7.91 × 10−14 µs, respectively. Even though the
time synchronisation precision ∆[t] under Φh (x[t], L[t]; W)
is slightly higher than that of the centralised controller, it ef-
fectively reduces communication overhead through the layered
design of the distributed communication scheme. The conven-
tional distributed controller exhibits slower convergence and
yields a larger mean precision of 0.8437 µs, compared to both
the proposed GNN-based control policy and the centralised
controller. This may be because the fixed control gain, which
is designed based on the known initial communication network
topology, cannot adapt to frequent topology changes caused by
the UAV mobility.

2) Performance Comparison among GNN-based Control
Policies: We then compare our proposed distributed GNNs
with the method in [31] and its variants. Here, we mainly focus
on the GNN-based control policies, as a comparison between
GNN-based and fully-connected neural network-based control
policies has been conducted in [4]. The Graph Convolutional
Neural Network (GCNN) with the readout phase is adopted

IEEE TNSE 11

TABLE V
AVERAGE AND STANDARD DEVIATION OF

∑T
t=0 c[t] FOR DIFFERENT

TRAINED GNN MODELS.

Normalised
Laplacian matrix

Normalised
adjacency matrix

GCNN w readout [31] 6.13± 1.58 6.23± 1.56
GCNN w/o readout 8.67± 2.26 9.27± 2.23

Dist. GNN w/ heat kernel 1.13± 0.14 1.09± 0.38
Dist. GNN w/o heat kernel 1.01± 0.13 0.78± 0.34

0

0.3

0.6

0.9

1.2

1.5

0

0.2

0.4

0.6

0.8

1.0

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0

0.1

0.2

0.3

0.4

0.5

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

0

0.1

0.2

0.3

0.4

0.5

Fig. 4. Evolution of the clock offset under Φh (x[t], L[t]; W) for different
swarm sizes.

from [31] and used as our baseline. This model consists of a
single layer (i.e. L = 1) with K = 3 and Gℓ = 64, along with
the 64-2 MLP-based readout. The Tanh activation function is
also adopted in this GCNN model [31] [see Equ. (8)].

Table V shows the comparison results. It can be seen that
our distributed GNNs outperform the GCNN model in [31].
From Equ. (4), time synchronisation in aerial swarms using
the centralised controller is a linear system. By removing the
activation function (i.e. Tanh), the proposed distributed GNN
Φl (x[t], L[t]; W) without the heat kernel represents a linear
parameterisation of the centralised controller. In this study,
the GNN parameterisation of the controller aligns with the
linear characteristics of the networked clock model [i.e. Equ.
(2)]. Thus, our proposed GNN model Φl (x[t], L[t]; W) can
achieve better synchronisation performance. This means that
including a activation function may not necessarily be benefi-
cial for improving GNN performance, and similar observations
can also be found in [18].

From Table V, although Φh (x[t], L[t]; W) with the heat
kernel performs slightly worse than Φl (x[t], L[t]; W)] with-
out it, the latter uses more layers (i.e. L = 4) compared
to the distributed GNN with the heat kernel (i.e. L = 2).
Stacking more layers requires exchanging additional multi-
hop UAV information, which increases the communication
overhead. The distributed GNN Φh (x[t], L[t]; W) with the
heat kernel achieves competitive performance under the same
architectural settings, as indicated in Tables III and IV. In
addition to leveraging the Laplacian matrix, we also train
and test GNNs using the adjacency matrix. GNNs trained
using Laplacian and adjacency matrices achieve similar time
synchronisation performance.

3) Scalability Evaluation of the Proposed GNNs: Our GNN
models, trained on swarms of 50 UAVs, are also evaluated

under various swarm sizes, and the results are presented in Fig.
4 and Table VI. When the number of UAVs in the swarm is less
than or equal to 200, the trained GNN models allow the UAV
clocks to achieve time synchronisation during the simulations.
As shown in Fig. 4, the convergence time increases with the
swarm size. From Table VI, the costs associated with the GNN
models are higher than those of the centralised controller,
mainly due to the longer convergence times. Overall, without
requiring re-training, the proposed distributed graph neural
networks achieve synchronisation performance comparable to
that of the centralised controller F∗, even when scaled to
larger swarm sizes, such as 200 UAVs.

However, our trained GNN models fail to achieve synchro-
nisation during the simulations when the swarm size exceeds
400 UAVs. This may be due to the slow convergence speed
(i.e. a large convergence time), as indicated in Fig. 4. Further
investigation is needed to understand the reason behind this
phenomenon.

C. GNN-based Resilient Synchronisation under Link Failures
In the literature, various types of jamming attacks have

been studied, including constant jamming and random/periodic
jamming attacks [6]. Even though these attacks differ in their
interference signal transmission strategies, they share a com-
mon goal: to disrupt communication links either temporarily
or permanently. Accordingly, to evaluate the resilience of our
trained GNN models under changing swarm networks, we
simulate the temporary and permanent communication link
failures caused by jamming attacks, as shown in Fig. 5.

For Attack Mode 1, the circular attack zone remains fixed,
while a swarm flies through it (see Fig. 5a). As a result,
the swarm communication network topology is temporarily
compromised. For Attack Mode 2, we continuously disrupt the
communication among UAVs within a certain circular zone of
an aerial swarm (see Fig. 5b). This means that the jamming
attacks permanently change the wireless network topology.
During the simulations, we vary the attack radius from 1.0m
to 2.5m in increments of 0.5m.

Figs. 6 and 7 show the evolution of the clock offset and
synchronisation precision ∆[t] under the proposed distributed
GNN-based control policy Φh (H;L,W), the centralised con-
troller F∗ and the conventional distributed controller, in the
presence of the temporary (i.e. Attack Mode 1) and permanent
(i.e. Attack Mode 2) communication link failures, respectively.
It is important to note that each subplot in Fig. 6 contains the
offsets of all the 50 UAVs, which are also used to compute
the precision ∆[t]. In contrast, each subplot in Fig. 7 includes
only the clocks of the UAVs that are not affected by jamming,
and these are used to calculate ∆[t]. In both attack modes
and across different attack radii, our trained GNN models and
the centralised controller are able to maintain clock synchro-
nisation during the simulations. The synchronisation perfor-
mance of the proposed GNN-based control policy remains
comparable to that of the centralised controller under both
the temporary and permanent communication link failures,
without requiring re-training.

For the conventional distributed controller in Attack Mode
1 (i.e. temporary link failures; see Fig. 6), the low convergence

IEEE TNSE 12

TABLE VI
AVERAGE AND STANDARD DEVIATION OF

∑T
t=0 c[t] FOR DIFFERENT SIZES OF SWARMS.

Num of UAVs in Swarms 25 50 100 200
F∗ 0.32± 0.017 0.33± 0.018 0.34± 0.0092 0.34± 0.0079

Φl (x[t], L[t]; W) 0.36± 0.025 0.97± 0.091 10.59± 1.05 200.31± 39.00
Φh (x[t], L[t]; W) 0.38± 0.039 1.15± 0.21 12.85± 2.76 234.20± 40.74

-5 0 5 10 15 20 25 30 35

X-axis

-5

0

5

10

15

20

25

30

35

Y
-a

x
is

Disrupted UAVs

Uncompromised UAVs

(a)

-5 0 5 10 15 20 25 30 35

X-axis

-5

0

5

10

15

20

25

30

35

Y
-a

x
is

Disrupted UAVs

Uncompromised UAVs

(b)
Fig. 5. Jamming attacks disrupt wireless communication among UAVs within a specific circular zone. (a) Attack Mode 1: the swarm flies through a fixed
circular attack zone, leading to the temporary link failures. (b) Attack Mode 2: attacks continuously disrupt wireless communication among UAVs within a
fixed circular zone, resulting in the permanent link failures.

0

0.24

0.48

0.72

0.96

1.20
GNN

Expert ctrl

Distributed ctrl

0
20

0
40

0
60

0
80

0
10

00
-40

0

40

80

120

160

0
20

0
40

0
60

0
80

0
10

00

(a)

0

0.24

0.48

0.72

0.96

1.20
GNN

Expert ctrl

Distributed ctrl

0
20

0
40

0
60

0
80

0
10

00
-40

0

40

80

120

160

0
20

0
40

0
60

0
80

0
10

00

(b)

Fig. 6. Evolution of θ[t] and ∆[t] using the distributed GNN-based control policy Φh (x[t], L[t]; W), the centralised controller F∗ and the distributed
controller under the temporary communication link failures caused by Attack Mode 1. (a) Attack radius equals 1.0 (left) and 1.5 (right). (b) Attack radius is
2.0 (left) and 2.5 (right). The shaded regions indicate the periods during which the swarm experiences the temporary link failures.

speed results in poor synchronisation among the UAV clocks.
During the attack period (i.e. the shaded regions in Fig. 6), the
offsets drift continuously, and the precision increases slightly,
as the clocks operate in free-running mode without achieving
consensus on the skews. Once the disrupted communication
links recover, the clocks can still be re-synchronised using the
distributed controller. The same offset-drifting phenomenon is
also observed under the GNN-based control policy. However,
due to its high convergence speed, Φh (H;L,W) allows all
the clocks to rapidly achieve synchronisation, leading to a
tiny precision value, as shown in Table VII. Even during the
attack period, when the clocks are in free-running mode, the
precision ∆[t] remains low owing to the consensus among,
and the small magnitudes of, the clock skews. Furthermore,
∆[t] under the GNN-based control policy exhibits a decreas-

ing trend throughout the simulations. This implies that the
temporary communication link failures have little effect on
the synchronisation performance, once the system reaches the
steady synchronised state.

In Attack Mode 2, the permanent communication link
failures in a subset of the swarm, namely, a fixed circular zone,
leads to a more sparsely connected wireless network. This
further degrades the convergence speed of the conventional
distributed controller. For instance, as shown in Fig. 7, when
the attack radius is 2.5m, the clock skews remain unsyn-
chronised across the swarm, causing only a weak consensus
trend in the offsets. Owing to the sparse swarm network
topology in Attack Mode 2, the convergence speed under the
GNN-based control policy is slightly reduced. However, clock
synchronisation can still be achieved. The mean values of the

IEEE TNSE 13

0

0.24

0.48

0.72

0.96

1.20
GNN

Expert ctrl

Distributed ctrl

0

0.24

0.48

0.72

0.96

1.20

0
20

0
40

0
60

0
80

0
10

00
-50

0

50

100

150

200

0
20

0
40

0
60

0
80

0
10

00
-100

0

100

200

300

400

(a)

0

0.24

0.48

0.72

0.96

1.20
GNN

Expert ctrl

Distributed ctrl

0

0.24

0.48

0.72

0.96

1.20

0
20

0
40

0
60

0
80

0
10

00
-150

0

150

300

450

600

0
20

0
40

0
60

0
80

0
10

00
-300

0

300

600

900

1200

(b)

Fig. 7. Evolution of θ[t] and ∆[t] using the distributed GNN-based control policy Φh (x[t], L[t]; W), the centralised controller F∗ and the distributed
controller under the permanent communication failures caused by Attack Mode 2. (a) Attack radius equals 1.0 (left) and 1.5 (right). (b) Attack radius is 2.0
(left) and 2.5 (right). The shaded regions represent that the swarm experiences the permanent link failures throughout the entire simulation.

TABLE VII
AVERAGE AND STANDARD DEVIATION OF ∆[t] OVER 100 STEPS BEFORE AND AFTER ENTERING/LEAVING THE ATTACK AREA FOR Φh (x[t], L[t]; W)

UNDER VARIOUS ATTACK RADII IN THE TEMPORARY COMMUNICATION LINK FAILURES CAUSED BY ATTACK MODE 1.

Attack radius [m] ∆[t] before entry [µs] ∆[t] after entry [µs] ∆[t] before exit [µs] ∆[t] after exit [µs]
1.0 8.30× 10−3 ± 8.00× 10−3 1.23× 10−4 ± 1.33× 10−4 2.86× 10−7 ± 3.66× 10−7 1.63× 10−8 ± 2.07× 10−8

1.5 1.83× 10−2 ± 1.75× 10−2 3.37× 10−4 ± 3.95× 10−4 2.24× 10−6 ± 4.26× 10−6 1.82× 10−7 ± 2.91× 10−7

2.0 3.79× 10−2 ± 3.63× 10−2 8.26× 10−4 ± 9.88× 10−4 1.25× 10−5 ± 2.38× 10−5 1.06× 10−6 ± 1.71× 10−6

2.5 7.71× 10−2 ± 7.40× 10−2 1.90× 10−3 ± 2.40× 10−3 5.70× 10−5 ± 1.13× 10−4 5.64× 10−6 ± 9.23× 10−6

TABLE VIII
MEAN AND STANDARD DEVIATION OF

∑T
t=0 c[t] FOR GNNS TRAINED USING TWO DIFFERENT SCHEMES

UNDER THE TEMPORARY COMMUNICATION LINK FAILURES CAUSED BY ATTACK MODE 1.

Attack radius [m] The proposed GNN policy Φh (x[t], L[t]; W) Expert control policy F∗ Conventional distributed controlAdversarial imitation learning Imitation learning
0.0 1.13± 0.14 1.14± 0.15 0.33± 0.018 80.16± 12.90
1.0 1.59± 0.46 1.59± 0.45 0.34± 0.013 106.40± 24.24
1.5 3.96± 1.91 3.99± 2.03 0.36± 0.012 157.51± 55.82
2.0 16.20± 13.79 16.07± 13.55 0.39± 0.014 283.81± 142.55
2.5 52.18± 36.67 51.34± 35.63 0.45± 0.021 566.07± 368.42

precision ∆[t] over the last 100 steps (i.e. 1 s) under the four
attack radii are 1.44×10−10 µs, 1.10×10−3 µs, 3.50×10−3 µs,
and 9.60 × 10−2 µs, respectively. For the performance of
Φh (H;L,W) when the swarm is split into two disconnected
parts due to permanent communication failures, please refer
to the Appendix.

Tables VIII and IX show that the GNN models under both
training schemes are resilient against the communication link
failures caused by two types of jamming attacks. Moreover,
the GNN models trained with adversarial imitation learning
[i.e. Equ. (19)] demonstrate slightly better performance than
those trained with imitation learning. This is particularly clear
when the attack radius is zero (i.e. no wireless link failures
occur during testing) or under the permanent communication
link failures (i.e. Attack Mode 2).

V. CONCLUSION

In this work, we have introduced the distributed graph neural
networks Φ (H;L,W) for synchronising clocks among UAVs.
This approach is applicable to large swarms or those with
dynamic wireless networks affected by the high mobility or
the temporary and permanent wireless link failures.

We propose integrating the heat kernel into the GNN
architecture, allowing it to retains low-frequency graph signals
while attenuating high-frequency ones. This is consistent with
the aim of time synchronisation, which is to ensure that the
states of all the clocks are the same, corresponding to low-
frequency graph signals. By setting K to 1, each UAV in the
swarm is modelled as a node in our GNN architecture, where
the one-hop feature aggregation is equivalent to the one-hop
packet exchange between neighbouring UAVs. The swarm’s
distributed communication network is naturally represented
through the GNN’s message-passing scheme. Thus, stacking
L layers allows each node to aggregate information from its
L-hop neighbourhood, without requiring a fully-connected net-
work topology. The proposed distributed GNNs Φ (H;L,W)
reduce communication overhead, when compared to state-of-
the-art decentralised GNNs, such as those in [31].

Leveraging the adversarial imitation learning scheme, our
GNN-based control policies achieve the similar synchronisa-
tion performance (without requiring re-training) when scaled
to large swarms, as compared to the centralised controller
using a fully-connected wireless network. Once trained, the
proposed GNN-based control policies are also resilient to vary-

IEEE TNSE 14

TABLE IX
MEAN AND STANDARD DEVIATION OF

∑T
t=0 c[t] FOR GNNS TRAINED USING TWO DIFFERENT SCHEMES

UNDER THE PERMANENT COMMUNICATION FAILURES CAUSED BY ATTACK MODE 2.

Attack radius [m] The proposed GNN policy Φh (x[t], L[t]; W) Expert control policy F∗ Conventional distributed controlAdversarial imitation learning Imitation learning
0.0 1.13± 0.14 1.14± 0.15 0.33± 0.018 80.16± 12.90
1.0 1.93± 0.35 1.94± 0.33 0.33± 0.014 165.80± 22.13
1.5 5.70± 1.67 5.77± 1.85 0.33± 0.016 447.02± 66.25
2.0 15.78± 4.44 15.91± 4.73 0.33± 0.017 1123.84± 203.57
2.5 78.53± 39.65 76.42± 33.63 0.32± 0.016 3523.94± 704.55

ing wireless networks, including the temporary or permanent
communication link failures, and can maintain synchronisation
even when the swarm is split into two disconnected parts.
Therefore, our proposed distributed graph neural networks can
serve as a backup controller in safety-critical aerial swarms.

APPENDIX: SPLITTING SWARMS INTO TWO
DISCONNECTED PARTS UNDER ATTACK MODE 2

For the permanent communication link failures in Attack
Mode 2, we also study the performance of the proposed
GNN-based control policy in the case where a swarm is
split into two disconnected parts, as shown in Fig. 8. Fig.
9 shows the evolution of the clock offset, skew and precision
under Φh (x[t], L[t]; W) and two traditional controllers in
this scenario.

In Fig. 9, even though the swarm is split into two parts, our
GNN-based control policy Φh (x[t], L[t]; W) still allows the
clock offsets in each part to converge to consensus. A similar
phenomenon is observed under the conventional distributed
controller; however, its convergence speed is lower, and the
clocks fail to achieve consensus during the simulations. For the
centralised controller, despite the swarm being split into two
parts, the UAVs in both parts can still communicate with the
central UAV. Hence, all the UAV clocks in both parts achieve
synchronisation. This is also reflected in the evaluation of ∆[t].
The precision values under both the GNN-based control policy
and the distributed controller increase, while the precision ∆[t]
under the centralised controller remains near zero during the
steady synchronised state.

Overall, even when the permanent communication link fail-
ures split a swarm into two disconnected parts, the proposed
distributed GNN-based control policy Φh (x[t], L[t]; W) can
still achieve resilient time synchronisation in each part.

REFERENCES

[1] I. Bekmezci, O. Sahingoz and S. Temel., “Flying Ad-Hoc Networks
(FANETs): A Survey,” Ad Hoc Netw., vol. 11, no. 3, pp. 1254-1270,
May 2013.

[2] K. Bai, J. Wu and H. Wu., “High-precision Time Synchronisation
Algorithm for Unmanned Aerial Vehicle Ad Hoc Networks based on
Bidirectional Pseudo-range Measurements,” Ad Hoc Netw., vol. 152, Jan.
2024.

[3] J. Gielis, A. Shankar and A. Prorok., “A Critical Review of Commu-
nications in Multi-robot Systems,” Current Robot. Reports, vol. 3, pp.
213–225, Aug. 2022.

[4] F. Gama and S. Sojoudi., “Graph Neural Networks for Distributed Linear-
Quadratic Control,” Proc. 3rd Conf. Learn. Dynamics Control, Jun. 2021.

[5] Z. Zheng, A. Sangaiah and T. Wang., “Adaptive Communication Protocols
in Flying Ad Hoc Network,” IEEE Commun. Mag., vol. 56, no. 1, pp.
136-142, Jan. 2018.

-5 0 5 10 15 20 25 30 35

X-axis

-5

0

5

10

15

20

25

30

35

Y
-a

x
is

Disrupted UAVs

Uncompromised UAVs

Fig. 8. Permanent communication link failures in Attack Mode 2 split the
swarm into two disconnected parts.

0

0.5

1.0

1.5

2.0

-100

-50

0

50

100

GNN

Expert ctrl

Distributed ctrl

0 200 400 600 800 1000
0

200

400

600

800

Part 1

Part 2

Fig. 9. Evolution of the clock offset, skew, and time synchronisation precision
under Φh (x[t], L[t]; W) (solid line), the centralised controller F∗ (dashed
line) and the conventional distributed controller (dotted line), when the swarm
is permanently split into two parts.

[6] H. Pirayesh and H. Zeng., “Jamming Attacks and Anti-Jamming Strate-
gies in Wireless Networks: A Comprehensive Survey,” IEEE Commun.
Surveys Tuts., vol. 24, no. 2, pp. 767-809, 2022.

[7] Y. Zong, S. Liu, X. Liu, S. Gao, X. Dai and Z. Gao., “Robust Synchro-
nised Data Acquisition for Biometric Authentication,” IEEE Trans. Ind.
Informat., vol. 18, no. 12, pp. 9072-9082, Dec. 2022.

[8] Y. Zong, X. Dai, Z. Wei, M. Zou, W. Guo and Z. Gao., “Robust
Time Synchronisation for Industrial Internet of Things by H∞ Output
Feedback Control,” IEEE Internet of Things J., vol. 10, no. 3, pp. 2021-
2030, Feb. 2023.

[9] R. Levie, W. Huang, L. Bucci, M. Bronstein and G. Kutyniok., “
Transferability of Spectral Graph Convolutional Neural Networks,” J.
Mach. Learn. Research, vol. 22, pp. 1-59, Nov. 2021.

[10] J. Blumenkamp, S. Morad, J. Gielis, Q. Li and A. Prorok., “A Framework
for Real-world Multi-robot Systems Running Decentralised GNN-Based
Policies,” Proc. Int. Conf. Robot. Autom., May 2022.

[11] Y. Zong, N. Lu and B. Jiang., “Synthesising Controllers for Quadrotors
via Imitation Learning,” in Proc. China Autom. Congr. (CAC), Nov. 2023.

[12] Y. Zong, X. Dai, P. Canyelles-Pericas, Z. Gao, W. NG, K. Busawon and
R. Binns., “Synchronisation of Packet Coupled Low-accuracy RC Os-

IEEE TNSE 15

cillator Clocks for Wireless Networks,” IEEE Trans. Wireless Commun.,
vol. 22, no. 7, pp. 4843-4857, Jul. 2023.

[13] J. Wu, K. Bai and H. Wu., “Advancing Convergence Speed of Distributed
Consensus Time Synchronisation Algorithms in Unmanned Aerial Vehicle
Ad Hoc Networks,” Drones, vol. 8, Jun. 2024.

[14] X. Huan, K. Kim, S. Lee, E. Lim and A. Marshall., “A Beacon-
less Asymmetric Energy-Efficient Time Synchronisation Scheme for
Resource-Constrained Multi-hop Wireless Sensor Networks,” IEEE Trans.
Commun., vol. 68, no. 3, pp. 1716-1730, Mar. 2020.

[15] H. Wang, L. Shao, M. Li, B. Wang and P. Wang., “Estimation of Clock
Skew for Time Synchronisation Based on Twoway Message Exchange
Mechanism in Industrial Wireless Sensor Networks,” IEEE Trans. Ind.
Informat., vol. 14, no. 11, pp. 4755-4765, Nov. 2018.

[16] K. Yildirim, R. Carli and L. Schenato., “Adaptive Proportional-Integral
Clock Synchronisation in Wireless Sensor Networks,” IEEE Trans. Con-
trol Syst. Technol., vol. 26, no. 2, pp. 610-623, Mar. 2018.

[17] K. Xu, W. Hu, J. Leskovec and S. Jegelka., “How Powerful are Graph
Neural Networks?” Proc. Int. Conf. Learn. Representations (ICLR), May
2019.

[18] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu and K. Weinberger.,
“Simplifying Graph Convolutional Networks,” Proc. 36th Int. Conf. Mach.
Learn. (ICML), Jun. 2019.

[19] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang and P. S. Yu., “A
Comprehensive Survey on Graph Neural Networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

[20] M. Defferrard, X. Bresson and P. Vandergheynst., “Convolutional Neural
Networks on Graphs with Fast Localised Spectral Filtering,” Proc. 30th
Int. Conf. Neural Inf. Process. Syst. (NeurIPS), Dec. 2016.

[21] X. Wang and M. Zhang., “How Powerful are Spectral Graph Neural
Networks,” Proc. 39th Int. Conf. Mach. Learn. (ICML), Jul. 2022.

[22] T. N. Kipf and M. Welling., “Semi-Supervised Classification with Graph
Convolutional Networks,” Proc. 5th Int. Conf. Learn. Representations
(ICLR), Apr. 2017.

[23] S. Segarra, W. Huang and A. Ribeiro., “Diffusion and Superposition
Distances for Signals Supported on Networks,” IEEE Trans. Signal Inf.
Process. Netw., vol. 1, no. 1, pp. 20-32, Mar. 2015.

[24] J. Ma, W. Huang, S. Segarra and A. Ribeiro., “Diffusion Filtering of
Graph Signals and Its Use in Recommendation Systems,” Proc. IEEE
Int. Conf. Acoustics, Speech Signal Process., Mar. 2016.

[25] F. Chung., “The Heat Kernel as the Pagerank of A Graph,” Proc.
National Academy Sci. United States America (PNAS), vol. 104, no. 50,
pp. 19735-19740, Dec. 2007.

[26] B. Xu, H. Shen, Q. Cao, K. Cen and X. Cheng., “Graph Convolutional
Networks using Heat Kernel for Semi-Supervised Learning,” Proc. 28th
Int. Joint Conf. Artificial Intell. (IJCAI), Aug. 2019.

[27] Q. Tan, Z. Wu, J. Lai, Z. Liang and Z. Ren., “HDGN: Heat Diffusion
Graph Network for Few-Shot Learning,” Pattern Recognition Lett., vol.
171, pp. 61-68, Jul. 2023.

[28] J. Choi, S. Hong, N. Park and S. Cho., “GREAD: Graph Neu-
ral Reaction-Diffusion Networks,” Proc. 40th Int. Conf. Mach. Learn.
(ICML), Jul. 2023.

[29] J. Zhao, Y. Dong, M. Ding, E. Kharlamov and J. Tang., “Adaptive
Diffusion in Graph Neural Networks,” Proc. 35th Conf. Neural Inf.
Process. Syst. (NeurIPS), Dec. 2021.

[30] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio and
Y. Bengio., “Graph Attention Networks,” Proc. 6th Int. Conf. Learn.
Representations (ICLR), Apr. 2018.

[31] F. Gama, Q. Li, E. Tolstaya, A. Prorok and A. Ribeiro., “Synthesising
Decentralised Controllers with Graph Neural Networks and Imitation
Learning,” IEEE Trans. Signal Process., vol. 70, pp. 1932-1946, Apr.
2022.

[32] Q. Li, W. Lin, Z. Liu and A. Prorok., “Message-Aware Graph Attention
Networks for Large-Scale Multi-robot Path Planning,” IEEE Robot.
Autom. Lett., vol. 6, no. 3, pp. 5533-5540, Jul. 2021.

[33] S. Agarwal, A. Ribeiro and V. Kumar., “Asynchronous Perception-
Action-Communication with Graph Neural Networks,” arXiv:2309.10164,
Sep. 2023.

[34] H. Ishii, Y. Wang and S. Feng., “An Overview on Multi-Agent Consensus
under Adversarial Attacks,” Annual Rev. Control, vol. 53, pp. 252-272,
May 2022.

[35] J. Rewienski, M. Groth, L. Kulas and K. Nyka., “Investigation of
Continuous Wave Jamming in An IEEE 802.15.4 Network,” Proc. 22nd
Int. Conf. Microw. Radar, May 2018.

[36] M. Wilhelm, I. Martinovic, J. B. Schmitt and V. Lenders., “Reactive
Jamming in Wireless Networks—How Realistic is the Threat?” Proc. 4th
ACM Conf. Wireless Netw. Security, Jun. 2011.

[37] Z. Chi, Y. Li, X. Liu, W. Wang, Y. Yao, T. Zhu and Y. Zhang.,
“Countering Cross-Technology Jamming Attack,” Proc. 13th ACM Conf.
Security Privacy Wireless Mobile Netw., Jul. 2020.

[38] H. Kenlay, D. Thanou and X. Dong., “Interpretable Stability Bounds for
Spectral Graph Filters,” Proc. 38th Int. Conf. Mach. Learn. (ICML), Jul.
2021.

[39] L. Ruiz, L. F. O. Chamon and A. Ribeiro., “Transferability Properties
of Graph Neural Networks,” IEEE Trans. Signal Process., vol. 71, pp.
3474-3489, Jul. 2023.

[40] W. Jin, Y. Li, H. Xu, Y. Wang, S. Ji, C. Aggarwal and J. Tang., “Ad-
versarial Attacks and Defenses on Graphs,” ACM SIGKDD Explorations
Newsletter, vol. 22, no. 2, pp. 19–34, Jan. 2021.

[41] S. Gunnemann., “Graph Neural Networks: Adversarial Robustness,” in
Graph Neural Networks: Foundations, Frontiers, and Applications, L.
Wu, P. Cui, J. Pei and L. Zhao, Eds., Singapore: Springer Singapore,
2022, pp. 149-176.

[42] L. Gosch, S. Geisler, D. Sturm, B. Charpentier, D. Zugner and S.
Gunnemann., “Adversarial Training for Graph Neural Networks: Pitfalls,
Solutions, and New Directions,” Proc. 37th Conf. Neural Inf. Process.
Syst. (NeurIPS), Dec. 2023.

[43] G. Giorgi and C. Narduzzi., “Performance Analysis of Kalman-Filter-
based Clock Synchronisation in IEEE 1588 networks,” IEEE Trans.
Instrum. Meas., vol. 60, no. 8, pp. 2902-2909, Aug. 2011.

[44] L. Galleani., “A Tutorial on the Two-State Model of the Atomic Clock
Noise,” Metrologia, vol. 45, no. 6, pp. 175-182, Dec. 2008.

[45] C. Zucca and P. Tavella., “The Clock Model and Its Relationship with the
Allan and Related Variances,” IEEE Trans. Ultrason. Ferroelectr. Freq.
Control, vol. 52, no. 2, pp. 289-296, Feb. 2005.

[46] A. Ortega, P. Frossard, J. Kovacevic, J. Moura and P. Vandergheynst.,
“Graph Signal Processing: Overview, Challenges, and Applications,”
Proc. IEEE, vol. 106, no. 5, pp. 808-828, May 2018.

[47] E. Tolstaya, F. Gama, J. Paulos, G. Pappas, V. Kumar and A. Ribeiro.,
“Learning Decentralised Controllers for Robot Swarms with Graph Neu-
ral Networks,” Proc. Conf. Robot Learn. (CoRL), Nov. 2020.

[48] D. Shuman, S. Narang, P. Frossard, A. Ortega and P. Vandergheynst.,
“The Emerging Field of Signal Processing on Graphs: Extending High-
Dimensional Data Analysis to Networks and Other Irregular Domains,”
IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83-98, May 2013.

[49] A. Sandryhaila and J. Moura., “Big Data Analysis with Signal Process-
ing on Graphs: Representation and Processing of Massive Data Sets with
Irregular Structure,” IEEE Signal Process. Mag., vol. 31, no. 5, pp. 80-90,
Sep. 2014.

[50] Prorok Lab, “A Framework for Real-world Multi-robot Systems Running
Decentralised GNN-based Policies,” YouTube, Available: https://www.
youtube.com/watch?v=COh-WLn4iO4, [Accessed: May 1, 2025].

[51] M. Balcilar, P. Heroux, B. Gauzere, P. Vasseur, S. Adam and P. Honeine.,
“Breaking the Limits of Message Passing Graph Neural Networks,” Proc.
38th Int. Conf. Mach. Learn. (ICML), Jul. 2021.

[52] L. Ruiz, F. Gama, and A. Ribeiro., “Graph Neural Networks: Archi-
tectures, Stability, and Transferability,” Proc. IEEE, vol. 109, no. 5, pp.
660-682, May 2021.

[53] R. Olfati-Saber, J. Fax, and R. Murray., “Consensus and Cooperation in
Networked Multi-Agent Systems,” Proc. IEEE, vol. 95, no. 1, pp. 215-
233, Jan. 2007.

https://www.youtube.com/watch?v=COh-WLn4iO4
https://www.youtube.com/watch?v=COh-WLn4iO4

	Introduction
	Related Work
	Time Synchronisation from Communication and Control Perspectives
	Graph Neural Network-based Control Policies

	Contributions and Paper Organisation

	Preliminaries and Problem Description
	Basics of Conventional Time Synchronisation
	Problem Description

	Distributed Graph Neural Networks
	Graph Neural Networks with the Heat Kernel
	Distributed Graph Neural Networks for Synchronisation
	Adversarial Imitation Learning

	Simulations
	Hyperparameter Selection
	Distributed GNN-based Control for Time Synchronisation
	Performance Comparison between the Proposed GNN-based and Existing Controllers
	Performance Comparison among GNN-based Control Policies
	Scalability Evaluation of the Proposed GNNs

	GNN-based Resilient Synchronisation under Link Failures

	Conclusion
	Appendix: Splitting Swarms into Two Parts under Attack Mode 2
	References

