
Synthesising Controllers for Quadrotors via
Imitation Learning

Yan Zong, Ningyun Lu, Bin Jiang
College of Automation Engineering

Nanjing University of Aeronautics and Astronautics
Nanjing, China

{y.zong, luningyun, binjiang}@nuaa.edu.cn

Abstract—In this work, we present a quadrotor control solu-
tion using neural networks with imitation learning. Instead of
mapping raw sensory variables to control outputs, we leverage
a feature engineering method to design neural network input
attributes, according to expert controller inputs. This improves
the capability of the learning-based control policies on tracking
different trajectories. Moreover, the neural network outputs of
the collective thrust and torque can be directly fed to the
quadrotor control allocator, without requiring any further data
transformation. During the training process, we also use the
Data Aggregation (DAgger) algorithm for the improved control
performance. The simulation results show that the quadrotors,
using the trained neural network controller, can achieve expert-
like behaviour (i.e. tracking square trajectories).

Index Terms—Quadrotor, imitation learning, data aggregation

I. INTRODUCTION

Quadrotors have been widely applied in many domains (e.g.
transportation and rescue). The Flight Control System (FCS)
in a quadrotor mainly consists of three parts: guidance, navi-
gation and control. The above three algorithms work together
to guarantee the quadrotors track desired trajectories with
minimum errors. However, designing a flight control system
for quadrotors requires years of expertise and effort. Recently,
we already have witnessed the success of artificial intelligence
(e.g. machine learning and robotics) [1] in solving complex
issues. Many machine learning techniques, including neural
network and reinforcement learning, can learn the complicated
mapping between the inputs (observations) and outputs (also
known as actions or commands). We are interested in finding a
single end-to-end control policy to let quadrotors track desired
trajectories. Such a control policy can serve as a backup
controller in safety-critical applications.

In this paper, we aim to use imitation learning with Data
Aggregation (DAgger) to train Neural Networks (NNs) from
demonstrations of experts. Based on the inputs and outputs of
expert controllers, we design the attributes and output actions

This work was supported in part by the National Natural Science Foundation
of China grant 62303221, in part by the Nanjing University of Aeronautics
and Astronautics grants YAH23008 and XCA22049-15, in part by the NUAA
HPC.

© 2023 IEEE. Personal use of this material is permitted. However, permis-
sion to use this material for any other purposes must be obtained from the
IEEE by sending a request to pubs-permissions@ieee.org.

of the neural networks. Quadrotors, using the trained neural
network control policies, can exhibit expert-like behaviour (i.e.
tracking square trajectories in our work).

A. Related Work

Until now, there has been much attention paid in exploiting
machine learning algorithms for developing flight control
systems. Most of researches use reinforcement learning to train
neural networks, and these trained neural network can control
quadrotors track desired trajectories (e.g. circles [2], combos
[3]). The input attributes of neural networks are usually inertial
measurements, namely, position, velocity, rotation matrix and
angular velocity. In addition to the inertial variables, visual
data and future trajectories are also used as input features [4].

In [2], [4], [5], the neural networks output four motors’
thrusts to control quadrotors. The collective thrust and body
rate are utilised as the commands [3]. To avoid the unstable
issue, the authors in [6] leverage the summation of Propor-
tional and Derivative (PD) control outputs and learning-based
controller outputs as actions. Unfortunately, no consensus
about selecting appropriate output form has been achieved
so far. Instead of adopting raw inertial variables as input
attributes, we utilise a feature engineering method (i.e. feature
extraction) to help us design input variables. This can improve
the capability of using neural network control quadrotors tack
different trajectories. We also exploit the collective thrust
and torque as control outputs, which can be directly fed to
allocators for further processing (see Fig. 2).

Even though reinforcement learning demonstrates compa-
rable performance on quadrotor trajectory tracking, its trial-
and-error learning strategy may raise safety concerns during
the training process. In the literature, there still exist several
studies using imitation learning to control aerial vehicles. For
example, in [7], a fully-connected neural network is trained
via imitation learning to control fixed-wing unmanned aircraft.
The current work shows that both imitation learning and
reinforcement learning can attain similar performance in some
cases [8]. Hence, we leverage imitation learning train neural
networks, and then control quadrotors track desired trajecto-
ries. This is of importance in the safety-critical applications.

Moreover, training learning-based technologies for control-
ling quadrotors belongs to the sequential prediction problem,

where future observations depend on previous predictions and
actions. This leads to violating the common (independent
identically distributed) i.i.d. assumption in the classical super-
vised learning approaches. Due to the above issue, controlling
quadrotors via learning-based solutions usually suffers from
(training and testing) data mismatch and compounding errors
[9]. The DAgger algorithm was proposed in [10] to solve this
problem. We also utilise this method during neural network
training for improving performance.

B. Contributions and Paper Organisation

We present a quadrotor control method using neural net-
works with imitation learning. Instead of mapping raw inertial
variables to control outputs, we leverage a feature extraction
solution to design neural network input attributes, according
to expert controller inputs. This improves the capability of
the learning-based control policies on tracking different tra-
jectories. Moreover, the neural network outputs of collective
thrust and torque can be directly fed to the quadrotor control
allocator, without any further data transformation. During the
training process, we also incorporate the DAgger algorithm
for the improved control performance. The simulation results
demonstrate that quadrotors, using the trained neural network
controller, can track the desired square trajectories.

The rest of this paper is organised as follows: Section 2
presents the problem formulation and quadrotor model. Then,
Section 3 shows the neural network input attributes, outputs,
structure and training details. Next, Section 4 demonstrates
simulation results. Eventually, Section 5 concludes this work.

II. PROBLEM FORMATION

To synthesise controllers for quadrotors by using imitation
learning, we implement the quadrotor dynamics in PyTorch.
The following section presents a brief overview of the model
implemented in the simulator.

A. A Quadrotor Model

We assume the quadrotor is a six degree-of-freedom rigid
body of mass m, and the moment of inertia J is a constant
diagonal matrix J = diag(Jx,Jy,Jz). The geometric center
is located at the Center of Gravity (CoG) of the quadrotor.
The quadrotor also is only under gravity and thrust forces,
which are generated by its four propellers [2]. Furthermore,
the rotational speed Ωi of each propeller is simplified as a
first-order model with the time constant Tm [4], [11], Ωcmd =
Cmσ +ϖm is the motor speed command vector, where σ ∈
[0,1] is the throttle command vector, Cm and ϖm are the
coefficients.

𝑧𝒲

𝑥𝒲

𝑦𝒲
𝑥ℬ

𝑦ℬ

𝑧ℬ

𝒈𝒲

𝟏𝟐

𝟑 𝟒

Fig. 1. Quadrotor with numbered propellers under the world and body frames.

The 16-dimensional model can be exploited to describe a
quadrotor, and its dynamics is written as

ṗW = vWvWvW

v̇W = gW −
f

m
R

Θ̇ = W · ωB

ω̇B = J−1 · (−ωB × (J · ωB) +G+ τ)

Ω̇ =
1

Tm
(Ωcmd −Ω)

(1)

where the position vector pW and the linear velocity vector
vW are in the world W frame. gW =

[
0 0 9.81 m/s2

]T
is the gravity vector in the world frame. The rotation matrix
R is the rotation from B to W [11]. Θ =

[
ϕ θ ψ

]T
is the

rotation angle vector with the roll angle ϕ, pitch angle θ and
yaw angle ψ. The matrix W equals to

W =

1 tan θ sinϕ tan θ cosϕ
0 cosϕ − sinϕ
0 sinϕ/ cos θ cosϕ cos θ

 .
ωB is the angular velocity (i.e. body rate) vector in the body B
frame. G is the gyroscopic torque. f and τ are, respectively,
the collective thrust and torque produced by four propellers
in the body frame; these two variables are obtained from the
following expressions:

f =

4∑
i=1

fi, τ =

4∑
i=1

(τi + ri × fi) , (2)

where ri is the i-th propeller’s location in B. Typically, the
thrust fi and torque τi, which are generated by the i-th
propeller, are assumed to be proportional to the square of the
propeller’s rotational speed Ωi [4], [11], yielding

fi =
[
0 0 cTΩ

2
i

]T
, τi =

[
0 0 cMΩ2

i

]T
, (3)

the coefficients Tm, Cm, ϖm, cT and cM can be estimated
via the parameter fitting method (see Section 6.3.4 of [11]).

B. Quadrotor Expert Control

In Fig. 2a, the low-level flight control π∗ of a quadrotor
consists of position control (i.e. outer-loop control), attitude
control (inner-loop control), control allocation and motor con-
trol. Based on the desired position pd, the position control is
to calculate the desired roll ϕd and pitch θd angles, along with
the desired total thrust fd. Next, the attitude controller aims to

Quadrotor

Outer Ctrl

Inner Ctrl

Allocator

Motor Ctrl

Low-level Flight Control 𝒑𝒅

𝝍𝒅

𝒇𝒅
𝝓𝒅, 𝜽𝒅

𝝉𝒅

𝚯,𝝎
𝛀𝒅

𝒑, 𝒗

𝝈𝒅

(a) (b)
Quadrotor

Allocator

Motor Ctrl

𝛀𝒅

𝝈𝒅

Neural

Network𝒇𝒅, 𝝉𝒅

𝚫𝒑,𝚫𝒗,𝚫𝝎

𝒔𝒊𝒏𝚯, 𝒄𝒐𝒔𝚯

Fig. 2. Quadrotor FCS structure of (a) the expert control policy π∗, and (b)
a neural network controller.

obtain the desired torque τd, according to the desired attitude
angles (which are from the outer-loop controller and input
ψd value). The control allocator then can allocate the desired
rotational speed Ωd,k for each propeller. From the above
desired rotational speeds Ωd, the motor controller calculates
the desired throttle command σd,k of each motor, which is fed
to the quadrotor.

For the position and attitude controllers in the low-level
flight control system, we use several Proportional-Integral-
Derivative (PID) controllers as controlling strategies. The
altitude channel is an uncertainty-free model, a proportional
controller is sufficient to deal with this type of system.
However, the attitude channel is a dynamic model subject to
various uncertainties, we have to exploit a PID controller to
compensate for the effects of uncertainties [11]. Moreover,
during the control parameter designing, this work ignores the
effects of G and −ωB × (J · ωB) in (1). We also adopt
the small-angle assumption. To avoid such an assumption
from being violated, and further from leading to the crash
of a quadrotor, we consider a saturation function in the PID
controller. By using the above PID control π∗, the quadrotor
can track a designated trajectory (see Fig. 5).

This work studies the trajectory tracking problem under the
neural network control. Specifically, the PID control π∗ is an
expert controller, and we aim to develop a neural network
to imitate this expert controller, and the trained NN also
can let the quadrotor track the trajectory. Note that π∗ is
not necessarily the optimal control strategy. This is important
because once in cases where the optimal control is found,
a neural network can learn this expert controller through
imitation learning.

III. METHOD

In this section, we first describe the input attributes, neural
network control outputs, and the NN structure. Then, we
present the method used to train our fully-connected neural
network control for quadrotors.

A. Input and Output Variables

For the neural network input features, instead of directly
using the raw (historical) quadrotor states or (future) reference
information of the desired trajectory (e.g. position, velocity,
rotation matrix and angular velocity), we exploit (i) the posi-
tion error, velocity error, and angular velocity error between
the reference values and the current quadrotor states at the
current time instant t; (ii) the differences in position, velocity

and angular velocity between the previous and current instants
(i.e. the time t− 1 and t); (iii) the trigonometric values of the
three (reference and current) attitude angles at t.

As a result, the input attributes of a neural network con-
troller are of the 42-dimension. The output u(t) from the
neural network is a 4-dimensional vector, which consists of
the collective thrust f and torque τ . We use a fully-connected
neural networks with four hidden layers, and each layer, re-
spectively, possesses 64-32-16-8 Tanh neurons. In this work,
we have not tried different neural network structures. Usually,
neural networks are versatile, and can handle a variety of
problems with a single architecture [6].

B. Training Details

The neural network is trained over a Mean Squared Er-
ror (MSE) cost function via the Adam optimiser. However,
using only the labelled inputs and output from the expert
controller π∗ may let the trained neural network suffer from
compounding errors [10]. To avoid the above issue, we exploit
the DAgger strategy. This process consists of rolling out the
neural network control policy and labeling the visited states
with the expert control [12]. Quadrotors follow the neural
network control instead of π∗ with the probability of 1 − β
when collecting new training data. The training details of using
DAgger are given in Algorithm 1.

Algorithm 1 DAgger for Neural Network Control Training
1: initialise D ← ∅, β;
2: for i = 0 : N do:
3: πi = βiπ∗ + (1− βi)π̂i;
4: sample trajectories using πi;
5: collect dataset: Di = {(s, π∗(s))}1;
6: aggregate datasets: D ← D ∪Di;
7: train π̂i+1 on D;
8: obtain 𭟋 via validating π̂i+1;
9: end for

10: return π̂i with the smallest value of 𭟋;

During NN validation, through comparing the neural net-
work outputs u(t) and the expert outputs u∗(t), we define the
accuracy 𭟋 to measure the performance of a trained neural
network:

𭟋 =
1

4

4∑
j=1

(
1

T

T∑
i=1

∥u(t)− u∗(t)∥2
) 1

2

, (4)

note that a smaller accuracy 𭟋 value means better control
performance of the neural network.

IV. SIMULATION RESULTS

We simulate a quadrotor with a mass of 1.4 kg, an arm
length of 0.225 m and a thrust-to-weight ratio of 2 : 1. The
simulation duration is 50 seconds, and the step size is 5 ms.
The training procedure consists of 50 DAgger iterations with

1s represents the visited states by π̂i, and π∗(s) denotes the actions given
by the expert controller π∗.

TABLE I
QUADROTOR CONFIGURATIONS

Value Unit

Tm 100 ms

Cm 706.01 rad · s−1

ϖm 170.47 rad · s−1

cT 1.201× 10−5 N · (rad/s)−2

cM 1.574× 10−7 N ·m · (rad/s)−2

Jx 1.563× 10−2 kg ·m2

Jy 1.563× 10−2 kg ·m2

Jz 2.636× 10−2 kg ·m2

30 epochs, and the batch size in each epoch is 20. The learning
rate is set to 0.005. In DAgger, the probability β of choosing
the expert control while training is decayed by a factor of 0.9
after each DAgger iteration. We only use the quadrotor states
between 12.5 and 50 seconds for training and data aggregation.
Table 1 summarises the quadrotor configurations.

Fig. 3 shows the evolution of the training cost and validation
accuracy during the neural network training. The more DAgger
processes are invoked, the better neural network model we
can obtain. After 49 DAgger iterations and 14 epoches, we
achieve the tiniest validation accuracy of 𭟋 = 0.177. The
above findings are also reflected in Fig. 4. We visualise
the data aggregation processes. Even though there still exist
several DAgger iterations (depicted in a light color) where the
quadrotor runs away from the designated square trajectory, the
quadrotor trajectories (presented in a darker color) using the
neural network control are close to the desired trajectory as
we have more data aggregation iterations.

Finally, we use both the neural network and expert con-
trollers to let the quadrotor track the desired time-dependent
path in the 50-second simulations. As can be seen from Fig.
5, both types of controllers achieve similar performance. This
means that the trained neural network has successfully imitated
the behaviour of the expert controller π∗.

V. CONCLUSION

In this work, we present a quadrotor control method using
neural networks with imitation learning. Based on the expert
controller inputs and outputs, we design neural network input
features and output actions. This improves the capability
of the learning-based control policies on tracking different
trajectories, and also needs no further data transformation.
During the training process, we also use the DAgger algorithm
for the improved control performance. The simulation results
demonstrate that the quadrotors, using the trained neural
network controller, can track desired square trajectories.

REFERENCES

[1] European Aviation Artifical Intelligence High Level Group, “The Fly
AI Report: Demystifying and Accelerating AI in Aviation/ATM,” Mar.
2020.

0.0

0.02

0.04

0.06

0.08

0.1

C
os

t

0 300 600 900 1200 1500
of batches

0.0

0.6

1.2

1.8

2.4

3.0

Ac
cu

ra
cy

Fig. 3. Training cost and validation accuracy during DAgger.

x (m)

0.0
1.0

2.0
3.0

4.0
5.0

6.0

y (
m

)

0.0
1.0

2.0
3.0

4.0
5.0

6.0

z
(m

)

3.86
3.9
3.94
3.98
4.02
4.06
4.1

Fig. 4. Intermediate trajectories flown under neural network control within
data aggregation.

x (m)

0.0
1.0

2.0
3.0

4.0
5.0

6.0

y (
m

)

0.0
1.0

2.0
3.0

4.0
5.0

6.0

z
(m

)

3.86
3.9
3.94
3.98
4.02
4.06
4.1

Desired trajectory
Expert control
Neural network controller

Fig. 5. Quadrotor trajectory tracking via both the expert and neural network
control policies.

[2] C. Pi, K. Hu, S. Cheng, and I. Wu., “Low-Level Autonomous Control
and Tracking of Quadrotor Using Reinforcement Learning,” Control
Eng. Practice, vol. 95, pp. 1-11, Feb. 2020.

[3] E. Kaufmann, A. Loquercio, R. Ranftl, M. Muller, V. Koltun, and D,
Scaramuzza., “Deep Drone Acrobatics,” in Proc. Robot. Sci. Syst., Jul.
2020, pp. 1-10.

[4] E. Kaufmann, L. Bauersfeld, and D, Scaramuzza., “A Benchmark
Comparison of Learned Control Policies for Agile Quadrotor Flight,”
in Proc. Int. Conf. Robot. Autom. (ICRA), May 2022, pp. 10504-10510.

[5] A. Molchanov, T. Chen, W. Honig, J. A. Preiss, N. Ayanian, and G. S.
Sukhatme., “Sim-to-(Multi)-Real: Transfer of Low-Level Robust Control
Policies to Multiple Quadrotors,” in Proc. Int. Conf. Intell. Robot. Syst.
(IROS), Nov. 2019, pp. 59-66.

[6] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter., “Control of a Quadrotor
with Reinforcement Learning,” IEEE Robot. Autom. Lett., vol. 2, no. 4,
pp. 2096-2103, Oct. 2017.

[7] D. Shukla, S. Keshmiri, and N. Beckage., “Imitation Learning for Neural
Network Autopilot in Fixed-Wing Unmanned Aerial Systems,” in Proc.
Int. Conf. Unmanned Aircraft Syst. (ICUAS), Sep. 2020, pp. 1508-1517.

[8] A. Kumar, J. Hong, A. Singh, and S. Levine., “When Should We Prefer
Offline Reinforcement Learning Over Behavioral Cloning?” in Proc. Int.
Conf. Learn. Representations (ICLR), Apr. 2022, pp. 1-36.

[9] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer.,
“HG-DAgger: Interactive Imitation Learning with Human Experts,” in
Proc. Int. Conf. Robot. Autom. (ICRA), May 2019, pp. 8077-8083.

[10] S. Ross, G. J. Gordon, and J. A. Bagnell., “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning,” in
Proc. Int. Conf. Artif. Intell. Statistics (AISTATS), Apr. 2011, pp. 627-
635.

[11] Q. Quan., Introduction to Multicopter Design and Control, 1st ed.
Springer, 2017.

[12] A. Loquercio, E. Kaufmann, R. Ranftl, M. Muller, V. Koltun, D.
Scaramuzza., “Learning High-Speed Flight in the Wild,” Sci. Robot.,
vol. 6, np. 59, pp. 1-16, Oct. 2021.

